The 27 references in paper D. Kadirova K., Д. Кадирова К. (2017) “ТЕРМОЭЛЕКТРИЧЕСКИЙ ИНТЕНСИФИКАТОР ТЕПЛОПЕРЕДАЧИ ПРОТОЧНОГО ТИПА // POWER, METALLURGICAL AND CHEMICAL MECHANICAL ENGINEERING FLOW TYPE THERMOELECTRIC HEAT TRANSFER INTENSIFIER” / spz:neicon:vestnik:y:2017:i:2:p:68-76

1
Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. - СПб.: Политехника. - 2005. - 534 с.
(check this in PDF content)
2
Анатычук Л.И. Термоэлементы и термоэлектрические устройства. - Киев: Наукова Думка. - 1979. - 768 с.
(check this in PDF content)
3
Булат Л.П. Прикладные исследования и разработки в области термоэлектрического охлаждения в России // Холодильная техника. - 2009. - No7. - С. 34-37.
(check this in PDF content)
4
Малкович Б.Е.-Ш. Термоэлектрические модули на основе сплавов теллурида висмута // Доклады XI Межгосударственного семинара «Термоэлектрики и их применение». - Санкт-Петербург. - 2008. - С. 462-468.
(check this in PDF content)
5
Дрейцер Г. А., Лобанов И.Е. Предельная интенсификация теплообмена в трубах за счет искусственной турбулизации потока //ИФЖ. 2003. Т.76, No1. 46—51 с.;
(check this in PDF content)
6
Дрейцер Г. А., Исаев С. А., Лобанов И. Е. Расчет конвективного теплообмена в трубах с периодическими выступами // Проблемы гидродинамики и теплообмена в энергетических установках. М.: Изд. МЭИ. 2003. Т.1. 57—60 с.;
(check this in PDF content)
7
Осипов М. И., Олесевич Р. К., Олесевич К. А. Экспериментальное и численное исследование теплообменных аппаратов шнекового типа //Труды Второй Российской национальной конференции по тепломассообмену. М.: МЭИ. 2002. Т.6. 159—162 с.;
(check this in PDF content)
8
Попов И.А., Махянов Х.М., Гуреев В.М. Физические основы и промышленное применение интенсификации теплообмена. Под общ. Ред. Ю.Ф. Гортышова / Казань.2012. Изд. дом «Логос» -559с
(check this in PDF content)
9
Гортышов Ю. Ф., Олимпиев В. В., Попов И. А. Эффективность промышленно эффективных интенсификаторов теплопередачи (Обзор. Анализ. Рекомендации) // Известия РАН, Энергетика. 2002. No 3. 102—118 с.;
(check this in PDF content)
10
Walker, G., Industrial Heat Exchangers: A Basic Guide, 2nd ed., HemispherePublishing, Washington, 1990.
(check this in PDF content)
11
Hewitt, G.F., Heat Exchanger Design Handbook, Begell House, 1990
(check this in PDF content)
12
Shah, R.K. Compact Heat Exchangers – Recuperators and Regenerators. In Handbook of Energy Efficiency and Renewable Energy. Kreith F., Yogi Goswami D., Chap.13. eds. CRC Press, Taylor & Francis Group, 2007.
(check this in PDF content)
13
Zimparov V. D. Extended performance evaluation criteria for heat transfer surfaces: Heat transfer through ducts with constant wall temperatures //Int. J. Heat Mass Transfer. 2000. v.43. No 17. P.3137—3150;
(check this in PDF content)
14
Chinangad R. S., Master B. I., Thome J. R. Helixchanger Heat Exchanger: Single — Phase and Two-Phase Enhancement // Compact Heat Exchangers and Enhancement Technology for the Process Industries. New York, Wallingford (UK). Begell House, Inc. 1999. P.471—477;
(check this in PDF content)
15
Dreitser G. A. Modern problems of cryogenic heat transfer and its enhancement (Generalization of experimental results. Practical recommendations and different applications) //Low Temperature and Cryogenic Refrigeration. Dordrecht, Boston, London. Kruger Academic Publications. 2003. P.201—220;
(check this in PDF content)
16
O.G. Martynenko International Journal of Heat and Mass Transfer, Volume 41, Issue 11, June 1998, Pages 1371-1384
(check this in PDF content)
17
Muhammad Sajid, Ibrahim Hassan, Aziz Rahman. An overview of cooling of thermoelectric devices// School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences & Technology (NUST), Islamabad, Pakistan/ Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar. Energy. Volume 118, 1 January 2017, Pages 1035–1043
(check this in PDF content)
18
Kazuaki Yazawaa, Ali Shakouria,Terry J. Hendricksb.Thermoelectric heat recovery from glass melt processes// Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA/ NASA - Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109, USA. Volume 185, 15 December 2016, Pages 598–602
(check this in PDF content)
19
Ahmed El-Desouky, Michael Carter,Matthieu A. Andre, Philippe M. Bardet,Saniya LeBlanc. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices//Department of Mechanical & Aerospace Engineering, The George Washington University, USA.Progress in Materials Science. Volume 83, October 2016, Pages 330–382
(check this in PDF content)
20
Chhatrasal Gaynera,Kamal K. Kara. Recent advances in thermoelectric materials// Advanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016, India/ Advanced Nanoengineering Materials Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India. Applied Energy. Volume 168, 15 April 2016, Pages 65–74
(check this in PDF content)
21
T. Zhang. New thinking on modeling of thermoelectric devices//Institute of Northern Engineering, College of Engineering and Mines, University of Alaska Fairbanks, 306 Tanana Drive, Duckering Building, Fairbanks, AK 99775, USA/ Renewable and Sustainable Energy Reviews. Volume 38, October 2014, Pages 903–916
(check this in PDF content)
22
Elena Otilia Virjogheb,Diana Enescua, Elena Otilia Virjogheb. A review on thermoelectric cooling parameters and performance// Department of Electronics, Telecommunications and Energy, Valahia University of Tar goviste, Unirii Avenue 18-20, 130082 Targoviste, Dambovita, Romania/ Department of Automatics, Informatics and Electrical Engineering, Valahia University of Targoviste, 130082 Targoviste, Dambovita, Romania.Applied Thermal Engineering. Volume 66, Issues 1–2, May 2014, Pages 15–24
(check this in PDF content)
23
Dongliang Zhao,Gang Tan. A review of thermoelectric cooling: Materials, modeling and applications// University of Wyoming, Department of Civil and Architectural Engineering, 1000 E. University Avenue, Dept. 3295, Laramie, WY 82071, USA. Applied Thermal Engineering. Volume 23, Issue 8, June 2003, Pages 913– 935
(check this in PDF content)
24
S.B Riffat, Xiaoli Ma. Thermoelectrics: a review of present and potential applications// Institute of Building Technology, School of the Built Environment, The University of Nottingham, University Park, Nottingham NG7 2RD, UK. Applied Thermal Engineering. Volume 64, Issues 1–2, March 2014, Pages 252–262
(check this in PDF content)
25
J. Steven Browna, Piotr A. Domanskib. Review of alternative cooling technologies// Department of Mechanical Engineering, Catholic University of America, 620 Michigan Avenue, NE, Washington, DC 20064, USA/ National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA. Applied Thermal Engineering. Volume 63, Issue 1, 5 February 2014, Pages 33–39
(check this in PDF content)
26
Fábio A.S. Mota, Mauro A.S.S. Ravagnani, E.P. Carvalho. Optimal design of plate heat exchangers// Chemical Engineering Graduate Studies Program, State University of Maringá, Av. Colombo, 5790 Maringá, PR, Brazil. Возобновляемые и устойчивые источники энергии комментарии. Том 16, Выпуск 4, Май 2012, Стр. 1883-1891
(check this in PDF content)
27
Mazen M. Abu-Hader. Plate Heat Exchangers: Recent Achievements // Faculty of Chemical Engineering, Faculty of Engineering Technology, Ltd.-Balka Applied University Address: P. O. Box: 9515 Al-weibedah, 11191, Amman, Jordan. Renewable and Sustainable Energy Reviews. Volume 15, Issue 9, December 2011, Pages 4855-4875
(check this in PDF content)