The 20 reference contexts in paper A. Ilyuschenko Ph., I. Fomikhina V., M. Dechko M., V. Kovalevskij N., А. Ильющенко Ф., И. Фомихина В., М. Дечко М., В. Ковалевский Н. (2017) “ДЕФОРМАЦИОННОЕ ИЗМЕЛЬЧЕНИЕ ЗЕРЕН МИКРОСТРУКТУРЫ ЛЕГИРОВАННЫХ СТАЛЕЙ ПРИ НЕСТАЦИОНАРНОЙ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ВЗРЫВОМ // DEFORMATIONAL GRAIN GRINDING OF ALLOYED STEELS MICROSTRUCTURE AT NON-STATIONARY INTENSE PLASTIC DEFORMATION BY EXPLOSION” / spz:neicon:vestift:y:2016:i:4:p:7-15

  1. Start
    4164
    Prefix
    По мере деформирования происходит разориентация возникающих фрагментов, приводящая к измельчению зерен микроструктуры, достигающих некоторого предельного значения dmin. Величина dmin зависит от типа структуры, способа деформирования и параметров процесса: скорости, степени и температуры деформации
    Exact
    [1, 3]
    Suffix
    . В ряде работ предпринята попытка построения математических моделей, позволяющих рассчитать теоретическое значение dmin [1-6]. В [1] изучены математические модели, описывающие зависимость величины предела измельчения зерен от природы материала и температуры интенсивной пластической деформации по технологии равноканального углового прессования.
    (check this in PDF content)

  2. Start
    4291
    Prefix
    Величина dmin зависит от типа структуры, способа деформирования и параметров процесса: скорости, степени и температуры деформации [1, 3]. В ряде работ предпринята попытка построения математических моделей, позволяющих рассчитать теоретическое значение dmin
    Exact
    [1-6]
    Suffix
    . В [1] изучены математические модели, описывающие зависимость величины предела измельчения зерен от природы материала и температуры интенсивной пластической деформации по технологии равноканального углового прессования.
    (check this in PDF content)

  3. Start
    4300
    Prefix
    Величина dmin зависит от типа структуры, способа деформирования и параметров процесса: скорости, степени и температуры деформации [1, 3]. В ряде работ предпринята попытка построения математических моделей, позволяющих рассчитать теоретическое значение dmin [1-6]. В
    Exact
    [1]
    Suffix
    изучены математические модели, описывающие зависимость величины предела измельчения зерен от природы материала и температуры интенсивной пластической деформации по технологии равноканального углового прессования.
    (check this in PDF content)

  4. Start
    4872
    Prefix
    Данный метод реализует схему, при которой деформирование металла протекает в стационарных условиях (с постоянной и относительно невысокой скоростью деформации, при постоянных степени и температуре деформации). В качестве модельных структур рассматриваются гомогенные микроструктуры металлов и сплавов. Деформационное измельчение зерен описано в
    Exact
    [1]
    Suffix
    на основе двух механизмов фрагментации: 1. Аккомодационное внутризеренное скольжение. Формирующиеся на границах зерен дефекты и, в первую очередь, стыковые дисклинации создают в зернах микроструктуры мощные поля внутренних напряжений σi, вызывающие внутризеренное скольжение.
    (check this in PDF content)

  5. Start
    5937
    Prefix
    Энергия активации зернограничной диффузии в неравновесных границах зерен существенно зависит от избыточного свободного объема, связанного с внесенными в границу дефектами. При высокой плотности дефектов избыточный свободный объем может стать столь значительным, что энергия активации зернограничной диффузии может стать равной энергии активации диффузии в расплаве
    Exact
    [5]
    Suffix
    . При малых размерах фрагментов скорость диффузионной аккомодации стыковых дисклинаций становится такой высокой, что мощность стыковых дисклинаций не может достичь критической величины, необходимой для испускания оборванной дислокационной стенки, т.е. для фрагментации.
    (check this in PDF content)

  6. Start
    6548
    Prefix
    Вследствие развития диффузионной аккомодации стыковых дисклинаций появляется предел деформационного измельчения зерен, т. е. минимальный размер зерна, который не может быть уменьшен при заданных условиях пластического деформирования материала. Основные этапы эволюции структуры, приводящие к образованию мелких зерен, включают в себя
    Exact
    [1]
    Suffix
    : образование скоплений дислокаций; преобразование их в несовершенные границы, обособляющие ячейки – области кристалла с относительно малой плотностью дислокаций; образование полос, которые по мере нарастания деформации уменьшаются в поперечных размерах, изменяют направление развития и пересекаются.
    (check this in PDF content)

  7. Start
    7621
    Prefix
    , вызывающее пластическую деформацию зерен, с пределом текучести материала, φ - геометрический множитель порядка 1; К – коэффициент Холла–Петча, связывающий предел текучести поликристаллического материала с размером зерна. В ряде исследований показано, что коэффициент Холла-Петча зависит от различных факторов, сопровождающих процесс деформирования кристаллических структур
    Exact
    [1-4]
    Suffix
    . В [3] приведена формула для расчета коэффициента Холла-Петча для крупнокристаллических металлов: * 0 2 . (1) Gb K v σ = π− (2) Здесь σ* - напряжение в зерне, при котором начинается пластическая деформация.
    (check this in PDF content)

  8. Start
    7630
    Prefix
    пластическую деформацию зерен, с пределом текучести материала, φ - геометрический множитель порядка 1; К – коэффициент Холла–Петча, связывающий предел текучести поликристаллического материала с размером зерна. В ряде исследований показано, что коэффициент Холла-Петча зависит от различных факторов, сопровождающих процесс деформирования кристаллических структур [1-4]. В
    Exact
    [3]
    Suffix
    приведена формула для расчета коэффициента Холла-Петча для крупнокристаллических металлов: * 0 2 . (1) Gb K v σ = π− (2) Здесь σ* - напряжение в зерне, при котором начинается пластическая деформация.
    (check this in PDF content)

  9. Start
    7934
    Prefix
    В [3] приведена формула для расчета коэффициента Холла-Петча для крупнокристаллических металлов: * 0 2 . (1) Gb K v σ = π− (2) Здесь σ* - напряжение в зерне, при котором начинается пластическая деформация. В
    Exact
    [3]
    Suffix
    эта величина приведена для IF-сталей (сталь с микроструктурой без дефектов внедрения) и равна 450 МПа; v – коэффициент Пуассона (для сталей 0,25); G – модуль сдвига, равный 8,1∙104 МПа; b – вектор Бюргерса, равный 2,58∙10-10 м для ГЦК- и 2,48∙10-10 м для ОЦК-решеток.
    (check this in PDF content)

  10. Start
    8655
    Prefix
    -Петча для ГЦК (8,93∙104 кг/(с2∙м1/2)) - и ОЦК (8,76∙104 кг/с2∙м1/2)-решеток; d - ширина границы, равная удвоенному вектору Бюргерса, d = 2b = 5,16∙10-10 м; *bD- коэффициент зернограничной диффузии, равный exp(/)bobDQ kT∗∗; * Qb - энергия активации самодиффузии в равновесных границах зерен; W - атомный объем, равный 1,18∙10-23см3 или 1,18∙10-29 м3; T – температура процесса, К. В
    Exact
    [6]
    Suffix
    указывается, что энергия активации зернограничной диффузии в неравновесных границах зерен значительно зависит от избыточного свободного объема, связанного с внесенными в границу дефектами. При малой плотности внесенных дефектов наблюдаются обычные значения Qb~ 9 kTm.
    (check this in PDF content)

  11. Start
    9141
    Prefix
    При высокой плотности дефектов избыточный свободный объем может стать таким значительным, что величина энергии активации зернограничной диффузии будет равной значению энергии активации диффузии в расплаве QL~ 3 kTm
    Exact
    [4]
    Suffix
    . Из этого следует, что данный параметр может быть переменным для различных условий деформирования (температуры и степени деформации). В [2] приведено значение предэкспоненциального множителя коэффициента зернограничной диффузии 830(10 м /с)bD∗−= и утверждается, что полученная величина носит оценочный характер.
    (check this in PDF content)

  12. Start
    9281
    Prefix
    При высокой плотности дефектов избыточный свободный объем может стать таким значительным, что величина энергии активации зернограничной диффузии будет равной значению энергии активации диффузии в расплаве QL~ 3 kTm [4]. Из этого следует, что данный параметр может быть переменным для различных условий деформирования (температуры и степени деформации). В
    Exact
    [2]
    Suffix
    приведено значение предэкспоненциального множителя коэффициента зернограничной диффузии 830(10 м /с)bD∗−= и утверждается, что полученная величина носит оценочный характер. Для точного вычисления величины dmin необходима подробная информация о значениях *bD и зависимости Db(έv), а также сведения о величине локальной скорости деформации έv.
    (check this in PDF content)

  13. Start
    9827
    Prefix
    Откуда можно предположить, что значение *0bD меняется в широких пределах в зависимости от условий деформирования; k – постоянная Больцмана, равная 1,38∙10-23 Дж/К; А1 – численный параметр, равный 10
    Exact
    [1]
    Suffix
    ; x - коэффициент однородности пластической деформации, равный 10-4 [1]. Цель работы – экспериментальное и теоретическое исследование зависимости размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситно-стареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом и построение модели, позволяющей рассчитывать вел
    (check this in PDF content)

  14. Start
    9897
    Prefix
    Откуда можно предположить, что значение *0bD меняется в широких пределах в зависимости от условий деформирования; k – постоянная Больцмана, равная 1,38∙10-23 Дж/К; А1 – численный параметр, равный 10 [1]; x - коэффициент однородности пластической деформации, равный 10-4
    Exact
    [1]
    Suffix
    . Цель работы – экспериментальное и теоретическое исследование зависимости размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситно-стареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом и построение модели, позволяющей рассчитывать величину предела диспергирования.
    (check this in PDF content)

  15. Start
    10364
    Prefix
    размера зерна легированных высокопрочных сталей аустенитного, бейнитного, мартенситно-стареющего классов от температуры и степени деформации при нестационарной интенсивной пластической деформации взрывом и построение модели, позволяющей рассчитывать величину предела диспергирования. Результаты и их обсуждение. Модель диспергирования. В ее основе лежат теория неравновесных границ зерен
    Exact
    [3, 4]
    Suffix
    и результаты экспериментальных и теоретических исследований структуры и свойств легированных сталей, подвергнутых интенсивной пластической деформации [5–9]. Процесс деформирования при обработке легированных сталей взрывом радикально отличается от стационарного процесса.
    (check this in PDF content)

  16. Start
    10522
    Prefix
    В ее основе лежат теория неравновесных границ зерен [3, 4] и результаты экспериментальных и теоретических исследований структуры и свойств легированных сталей, подвергнутых интенсивной пластической деформации
    Exact
    [5–9]
    Suffix
    . Процесс деформирования при обработке легированных сталей взрывом радикально отличается от стационарного процесса. Силовое воздействие на деформируемую заготовку реализуется в результате кратковременного и интенсивного силового импульса.
    (check this in PDF content)

  17. Start
    12523
    Prefix
    Исходя из этого приняли, что средняя скорость деформации пропорциональна степени деформации vcε=ε, а константа скорости c равна скорости звука в металле (скорость ударной волны взрыва) 6∙103 м/с. В
    Exact
    [2]
    Suffix
    утверждается, что для точного вычисления величины dmin необходимы подробные сведения о значениях *bD и зависимости Db(έv), а также о величине локальной скорости деформа- ции έv. Можно предположить, что значение *0bD меняется в широких пределах в зависимости от условий деформирования.
    (check this in PDF content)

  18. Start
    12860
    Prefix
    В [2] утверждается, что для точного вычисления величины dmin необходимы подробные сведения о значениях *bD и зависимости Db(έv), а также о величине локальной скорости деформа- ции έv. Можно предположить, что значение *0bD меняется в широких пределах в зависимости от условий деформирования. На основе кинематического уравнения фрагментации
    Exact
    [9]
    Suffix
    в [3] выведена зависимость оценки накопленной тензорной плотности дислокаций от степени деформации, которая представлена экспоненциальной формулой вида 012exp()β−β ε + β. Указано, что численные оценки качественно совпадают с экспериментальными данными.
    (check this in PDF content)

  19. Start
    12866
    Prefix
    В [2] утверждается, что для точного вычисления величины dmin необходимы подробные сведения о значениях *bD и зависимости Db(έv), а также о величине локальной скорости деформа- ции έv. Можно предположить, что значение *0bD меняется в широких пределах в зависимости от условий деформирования. На основе кинематического уравнения фрагментации [9] в
    Exact
    [3]
    Suffix
    выведена зависимость оценки накопленной тензорной плотности дислокаций от степени деформации, которая представлена экспоненциальной формулой вида 012exp()β−β ε + β. Указано, что численные оценки качественно совпадают с экспериментальными данными.
    (check this in PDF content)

  20. Start
    13287
    Prefix
    Указано, что численные оценки качественно совпадают с экспериментальными данными. Поэтому допустим, что зависимость коэффициента зернограничной диффузии от степени деформации может принимать вид 0012( )[ exp () 1].bDε = β β−β + (3) Как отмечено в
    Exact
    [6]
    Suffix
    , по мере накопления дефектов кристаллической структуры *bQ может меняться от *~9bmQkT до *~3LmQkT, т. е. убывать. Для простоты примем, что в зависимости от сте- е. убывать. Для простоты примем, что в зависимости от сте-е. убывать.
    (check this in PDF content)