The 96 references without contexts in paper A. Guskov M., Yu. Bogdanova V., А. Гуськов М., Ю. Богданова В. (2016) “Особенности проектирования устройства искусственного желудочка сердца: обзор работ // Left ventricular assist device (lvad) design features: literature review” / spz:neicon:technomag:y:2014:i:3:p:162-187

1
Около миллиона россиян ежегодно умирает от сердечной недостаточности // РИА Новости: сайт, 17 May 2013. Режим доступа: http://ria.ru/society/20130517/937886634.html (дата обращения
(check this in PDF content)
2
01.2014). 2. Иткин Г.П. Состояние проблемы создания искусственного сердца в России // Проблемы управления. 2006. No 3. С. 57-67.
(check this in PDF content)
3
Немецкий кардиологический Центр в Берлине (DHZB): сайт. Режим доступа: http://www.dhzb.ru/ (дата обращения 17.01.2014).
(check this in PDF content)
4
Birks E.J. The Comparative Use of Ventricular Assist Device: Differences between Europe and the United States // Texas Heart Institute Journal. 2010. Vol. 37, no. 5. P. 565-567.
(check this in PDF content)
5
Thoratec HeartMate II® LVAD. Available at: http://www.mylvad.com/lvad-devices/heartmate-iilvad , accessed 10.02.2014.
(check this in PDF content)
6
Бокерия Л.А., Николаев Д.А., Фадеев А.А. Протезы клапанов сердца, поддерживающие закрученную структуру потока крови // Клиническая физиология кровообращения. 2009. No 2. С. 47-51.
(check this in PDF content)
7
Синтез искусственных желудочков сердца с заданными гемодинамическими характеристиками / В.В. Морозов, А.В. Жданов, Е.И. Шмыгов и др. Владимир: ВлГУ, 2007. 180 p.
(check this in PDF content)
8
Apel J., Neudel F., Reul H. Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump // ASAIO Journal. 2001. Vol. 47. P. 552-558.
(check this in PDF content)
9
Behbahani M., Behr M., Hormes M., Steinseifer U., Arora D., Coronado O., Pasqualia M. Review of Computational Fluid Dynamics Analysis of Blood Pumps // European Journal of Applied Mathematics. 2009. Vol. 20. P. 363-397.
(check this in PDF content)
10
Bartesaghi S., Colombo G. Embedded CFD Simulation for Blood Flow // Computer-Aided Design and Applications. 2013. Vol. 10, no. 4. P. 685-699.
(check this in PDF content)
11
Sousa L., Castro C., Antonio C., Chaves R. Computational Techniques and Validation of Blood Flow Simulation // WSEAS Transactions on Biology and Biomedicine. 2011. Vol. 8, iss. 4. P. 145-155.
(check this in PDF content)
12
Deparis S. HPC for Blood Flow Simulations: Advancements and Challenges. Ecole Polytechnique Federale De Lausanne, 2012. 40 p.
(check this in PDF content)
13
Behnia M., Ohta M., Srinivas K., Nakayama T. Fluid Dynamics of Blood Flow – Modelling and Simulation // Proc. of the 13th Annual Scientic Meeting and Workshops, 06-11 February 2010, Auckland, New Zealand, 2010. 75 p.
(check this in PDF content)
14
Behbahani M. Finite Element Simulation of Blood Flow. RWTH Aachen, 2006. 34 p.
(check this in PDF content)
15
Behr M., Arora D., Nosé Y., Motomura T. Performance Analysis of Ventricular Assist Devices Using Finite Element Flow Simulation // International Journal for Numerical Methods in Fluids. 2004. Vol. 46, no. 12. P. 1201-1210. DOI: 10.1002/fld.796
(check this in PDF content)
16
Fraser K.H., Taskin M.E., Griffith B.P., Wu Z.J. The use of computational fluid dynamics in the development of ventricular assist devices // Medical Engineering and Physics. 2011. Vol. 33, no. 3. P. 263-80.
(check this in PDF content)
17
Quarteroni A., Formaggia L. Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Ecole Polytechnique Federale De Lausanne, 2002. 103 p.
(check this in PDF content)
18
Veneziani A., Vergara C. Flow rate defective boundary conditions in hemodynamics simulations // International Journal for Numerical Methods in Fluids. 2005. Vol. 47. P. 803-816. DOI: 10.1002/fld.843
(check this in PDF content)
19
Vignon-Clementel I.E. A Coupled Multidomain Method for Computational Modeling of Blood Flow. Stanford University, 2006. 207 p.
(check this in PDF content)
20
Yang X.S., Lewis R.W., Zhang H.Y. Finite Element Analysis of Fogelson’s Model for Platelet Aggregation // Proc. of the European Congress on Computational Methods in Applied Sciences and Engineering, 2004. 5 p.
(check this in PDF content)
21
Zhang L., Jia Y., Zhang W., Wang Y., Zhao Q. Numerical Simulation Investigation on Flow Field of Axial Blood Pump // In: Advances in Computer Science and Engineering. Springer Berlin Heidelberg, 2012, pp. 223-229. (Ser. Advances in Intelligent and Soft Computing; vol. 141.). DOI: 10.1007/978-3642-27948-5_31
(check this in PDF content)
22
Беляев Л.В., Иванченко А.Б., Жданов А.В. Гемодинамические аспекты проектирования систем вспомогательного кровообращения и искусственного сердца на базе мехатронных модулей // Современные проблемы науки и образования. 2013. No 3. Режим доступа: http://www.scienceeducation.ru/109-9195 (дата обращения 01.03.2014).
(check this in PDF content)
23
Behr M., Arora D., Coronado O., Pasquali M. Models and Finite Element Techniques for Blood Flow Simulation // International Journal for Computational Fluid Dynamics. 2006. Vol. 20. P. 175-181.
(check this in PDF content)
24
Doyle M.G. Simulation of Blood Flow in a Ventricular Assist Device with Fluid-Structure Interaction Effects: Degree of Master of Applied Science. University of Ottawa, 2004. 116 p.
(check this in PDF content)
25
Bonnemain J., Deparis S., Quarteroni A. Connecting ventricular assist devices to the aorta: a numerical model: MATHICSE Technical Report. Ecole Polytechnique Federale De Lausanne, 2012. 19 p.
(check this in PDF content)
26
Разработка комплекса биотехнических систем «искусственное сердце» для замещения/поддержания функции сердца. (Этап 1: Выбор направления исследований. Теоретические и экспериментальные исследования поставленных перед НИР задач): отчет о НИР / НИЦ «Курчатовский институт»; рук. А.В. Коротеев. М., 2013. 80 с.
(check this in PDF content)
27
Alemu Y., Bluestein D. Flow Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies // Artificial Organs. 2007. Vol. 3. P. 677-688. DOI: 10.1111/j.1525-1594.2007.00446.x
(check this in PDF content)
28
Arora D., Behr M., Pasquali M. Blood damage measures for ventricular assist device modeling // In: Moving Boundaries VII: Computational Modelling of Free and Moving Boundary Problems / Mammoli A.A., Brebbia C.F., eds. WIT Press, Southampton, UK, 2003. P. 129-138.
(check this in PDF content)
29
Goodman P.D., Barlow E.T., Crapo P.M., Mohammad S.F., Solen K.A. Computational Model of Device-Induced Thrombosis and Thromboembolism // Annals of Biomedical Engineering. 2005. Vol. 33, no. 6. P. 780-797. DOI: 10.1007/s10439-005-2951-z
(check this in PDF content)
30
Sorensen E.N., Burgreen G.W., Wagner W.R., Antaki J.F. Computational Simulation of Platelet Deposition and Activation: 1. Model Development and Properties // Annals of Biomedical Engineering. 1999. Vol. 27, no. 4. P. 436-448. DOI: 10.1114/1.200
(check this in PDF content)
31
Sorensen E.N., Burgreen G.W., Wagner W.R., Antaki J.F. Computational Simulation of Platelet Deposition and Activation: 2. Results for Poiseuille Flow over Collagen // Annals of Biomedical Engineering. 1999. Vol. 27, no. 4. P. 449-458. DOI: 10.1114/1.201
(check this in PDF content)
32
Rau G. Research Report 2001/2002. Institute for Biomedical Technologies, Aachen University, 2002. 101 p.
(check this in PDF content)
33
Allaire P.E., Kim H.C., Maslen E.H., Bearnson G.B., Olsen D.B. Design of a Magnetic BearingSupported Prototype Centrifugal Artificial Heart Pump© // Tribology Transactions. 1996. Vol. 39, no. 3. P. 663-669.
(check this in PDF content)
34
Gomez A.D. Control of a magnetically levitated ventricular assist device: Degree of Master of Science in Mechanical Engineering. Rochester Institute of Technology, 2009. 140 p.
(check this in PDF content)
35
Noh M.D., Antaki J.F., Ricci M., Gardiner J., Paden D., Wu J., Prem E., Borovetz H., Paden B.E. Magnetic Design for the PediaFlow Ventricular Assist Device // Artificial Organs. 2008. Vol. 32, no. 2. P. 127-135. DOI: 10.1111/j.1525-1594.2007.00501.x
(check this in PDF content)
36
Greatrex N.A. Design of Physiological Control and Magnetic Levitation Systems for a Total Artificial Heart: Degree of Doctor of Philosophy. Queensland University of Technology, Faculty of Science and Engineering, 2013. 319 p.
(check this in PDF content)
37
Antunes P. Magnetic Suspension of the Rotor of a Ventricular Assistance Device of Mixed Flow Type – Hall Sensor for Rotor Position Measurement – Use of Compensator // ABCM Symposium Series in Mechatronics. Vol. 5: Section 8 - Sensors & Actuators, 2012. P. 1249-1256.
(check this in PDF content)
38
Cheng S., Olles M.W., Burger A.F., Day S.W. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA // Mechatronics (Oxf). 2011. Vol. 21, no. 7. P. 11631169. DOI: 10.1016/j.mechatronics.2011.07.010
(check this in PDF content)
39
Barbaraci G., Mariotti G.V. Sub-Optimal Control Law for Active Magnetic Bearings Suspension // Journal of Control Engineering and Technology (JCET). 2012. Vol. 2, no. 1. P. 1-10.
(check this in PDF content)
40
Bosiers M., Deloose K., Verbist J, Schroe H., Lauwers G., Lansink W., Peeters P. Heparin-bonded expanded polytetraflouroethylene vascular graft for femoropoliteal and femorocrural bypass grafting: 1years results // Journal of Vascular Surgery. 2006. Vol. 43, no. 2. P. 313-319.
(check this in PDF content)
41
Segesser L.K. Safety and efficacy of heparin-bonded surfaces in cardiopulmonary bypass // Thoracic and Cardiovascular Surgery. 2001. Vol. 121. P. 200-201.
(check this in PDF content)
42
Gorman R.C., Ziats N., Rao A.K., Gikakis N., Sun L., Khan M.M., Stenach N., Sapatnekar S., Chouhan V., Gorman J.H., Niewiarowski S., Colman R.W., Anderson J.M., Edmunds .LH. Jr. Surfacebound heparin fails to reduce thrombin formation during clinical cardiopulmonary bypass // Journal of Thoracic and cardiovascular surgery. 1996. Vol. 111. P. 1-12.
(check this in PDF content)
43
Хенч Л., Джонс Д. Биоматериалы, искусственные органы и инжиниринг тканей: пер. с англ. М.: Техносфера, 2006. 304 с.
(check this in PDF content)
44
Kurs A., Moffat R., Soljaĉić M. Simultaneous mid-range power transfer to multiple devices // Appl. Phys. Lett. 2010. Vol. 96. P. 044102. DOI: 10.1063/1.3284651
(check this in PDF content)
45
Kürschner D., Rathge C. Contactless energy transmission systems with improved coil positioning flexibility for high power applications // Proc. of the 39th IEEE Annual Power Electronics Specialists Conference (PESC '08), Rhodes, Greece, 2008. P. 4326-4332. DOI: 10.1109/PESC.2008.4592639
(check this in PDF content)
46
Ricketts D.S., Chabalko M.J., Hillenius A. Experimental demonstration of the equivalence of inductive and strongly coupled magnetic resonance wireless power transfer // Appl. Phys. Lett. 2013. Vol. 102. P. 053904. DOI: 10.1063/1.4788748
(check this in PDF content)
47
Lee W.S. Uniform magnetic field distribution of spatially structured resonant coil for wireless power transfer // Appl. Phys. Lett. 2012. Vol. 100. P. 214105. DOI: 10.1063/1.4719585
(check this in PDF content)
48
Kurs A., Karalis A., Moffatt R., Joannopoulos J.D., Fisher P., Soljacic M. Wireless power transfer via strongly coupled magnetic resonances // Science. 2007. Vol. 317, no. 5834. P. 83-86.
(check this in PDF content)
49
Bonde P., Sample A.P., Waters B., Cooper E., Toyoda Y., Kormos R.L., Smith J.R. Wireless Power for Ventricular Assist Devices: Innovation with the Free-Range Resonant Electrical Energy Delivery System (FREE-D) for Mechanical Circulatory Assist // AATS 91st Annual Meeting (Pennsylvania Convention Center, Philadelphia, PA, 7-11 May 2011), 2011.
(check this in PDF content)
50
Waters H.B., Sample A.P., Bonde P., Smith J.R. Powering a Ventricular Assist Device (VAD) With the Free-Range Resonant Electrical Energy Delivery (FREE-D) System // Proc. of the IEEE. 2012. Vol. 100, no. 1. P. 138-149. DOI: 10.1109/JPROC.2011.2165309
(check this in PDF content)
51
Finocchiaro T., Heinke S., Behbahani M., Leßmann M., Laumen M., Steinseifer U., Schmitz-Rode T., Leonhardt S., Behr M., Hamayer K. Methods of design, simulation, and control for the development of new VAD/TAH concepts // Biomedizinische Technik. Berlin, 2009. Vol. 54. P. 269-281.
(check this in PDF content)
52
How T.V. Advances in hemodynamics and hemorheology: vol. 1. Connecticut, London: JAI Press Inc., 1996. 449 p.
(check this in PDF content)
53
Nobile F. Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics: Ph.D. thesis. Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2001.
(check this in PDF content)
54
Reul H.M., Akdis M. Blood pumps for circulatory support // Perfusion. 2000. Vol. 15. P. 295-311.
(check this in PDF content)
55
John R. Current Axial-Flow Devices – the HeartMate II® and Jarvik 2000 Left Ventricular Assist Devices // Seminars in Thoracic and Cardiovascular Surgery. 2008. Vol. 20, no. 3. P. 264-272. DOI: 10.1053/j.semtcvs.2008.08.001
(check this in PDF content)
56
Timms D. A review of clinical ventricular assist devices // Medical Engineering and Physics. 2011. Vol. 33, no. 9. P. 1041-1047.
(check this in PDF content)
57
Circulatory and Ventricular Assist Devices (VAD). Available at: http://www.med.umich.edu/cardiac-surgery/patient/adult/ccs/vad.shtml , accessed 10.02.2014.
(check this in PDF content)
58
Беляев Л.В., Жданов А.В. Особенности современных подходов к проектированию систем искусственного сердца и вспомогательного кровообращения пульсирующего типа с применением ИПИ-технологий // Современные проблемы науки и образования. 2013. No 6. Режим доступа: http://www.science-education.ru/113-11654 (дата обращения 01.03.2014).
(check this in PDF content)
59
Жданов А.В., Беляев Л.В., Куликов С.В., Киласев Н.Б., Дробышев А.А. Современный подход к проектированию искусственных желудочков сердца на основе CALS-технологий // Современные проблемы науки и образования. 2012. No 5. Режим доступа: http://www.scienceeducation.ru/105-7077 (дата обращения 01.03.2014).
(check this in PDF content)
60
Жданов А.В., Беляев Л.В., Шевченко А.П. Геометрический синтез пространственного кулачкового механизма мехатронного модуля для систем вспомогательного кровообращения // Современные проблемы науки и образования. 2013. No 4. Режим доступа: http://www.scienceeducation.ru/110-9708 (дата обращения 01.03.2014).
(check this in PDF content)
61
Волкова И.В., Жданов А.В. Проектирование исполнительных механизмов насосных систем вспомогательного кровообращения и искусственного сердца // Научно-технический вестник Поволжья. 2011. No 2. С. 59-63.
(check this in PDF content)
62
Heart transplant reunion party celebrates lifesaving milestone. Available at: http://med.stanford.edu/patient_care/spotlight/archive/lvad.html , accessed 28.03.2013.
(check this in PDF content)
63
HeartWare® Ventricular Assist System: System Overview Hands-on Practicum. HeartWare, Inc., 2012. 70 p.
(check this in PDF content)
64
NASA. Blood Pump. Available at: http://www.nasa.gov/audience/foreducators/informal/features/F_Blood_Pump.html , accessed 28.03.2013.
(check this in PDF content)
65
DeBakey M.E. A miniature implantable axial flow ventricular assist device // Annual Thoracic Surgery. 1999. Vol. 68. P. 637-640.
(check this in PDF content)
66
Pagani F.D. Continuous-Flow Rotary Left Ventricular Assist Devices “3 rd Generation” Design // Thoracic and Cardiovascular Surgery. 2008. Vol. 20. P. 255-263.
(check this in PDF content)
67
Frazier O.H., Khalil H.A., Benkowski R.J. Optimization of axial-pump pressure sensitivity for a continuous-flow rotary left artificial heart // Journal of Heart Lung Transplant. 2010. Vol. 29. P. 687-691.
(check this in PDF content)
68
Lim Tau Meng, Cheng Shanbao. Development of Hybrid Magnetic Bearings System for AxialFlow Blood Pump // In: Advances in Industrial Engineering and Operations Research / Alan H. S. Chan, Sio-Iong Ao, eds. Springer US, 2008. P. 391-400. DOI: 10.1007/978-0-387-74905-1_28
(check this in PDF content)
69
Weber D.M., Raess D.H., Henriques J.P.S., Siess T. Principles of Impella cardiac support: The evolution of cardiac support technology toward the ideal assist device // Cardiac Intervention Today. 2009. Suppl. Principles of Hemodynamics. P. 3-16. Available at: http://citoday.com/pdfs/0909_supp.pdf , accessed 01.02.2014.
(check this in PDF content)
70
Leão T., Bock E., Uebelhart B., Fonseca J., Silva B., Leme J., Silva C., Andrade A. Study of speed control of the implantable centrifugal blood pump to avoid aortic valve stenosis // Proc. of the 22nd International Congress of Mechanical Engineering (COBEM 2013), 2013. P. 6133-6138. Available at: http://cobem2013.com.br/cd/PDF/1406.pdf , accessed 01.02.2014.
(check this in PDF content)
71
Milenin A., Kopernik M. Comparative analysis of ventricular assist devices (POLVAD and POLVAD_EXT) based on multiscale FEM model // Acta of Bioengineering and Biomechanics. 2011. Vol. 13, no. 2. P. 13-23.
(check this in PDF content)
72
Handbook of Hemorheology and Hemodynamics / Baskurt O.K., Hardeman M.R., Rampling M.W., Meiselman H.J., eds. IOS Press, 2007. 469 p.
(check this in PDF content)
73
ANSYS vs Comsol Multiphysics. Режим доступа: http://dolivanov.ru/node/152 (дата обращения 10.02. 2014).
(check this in PDF content)
74
Robertson A.M., Sequeria A., Kameneva M. Hemorheology. Hemodynamical Flows // Modeling, Analysis and Simulation. Oberwolfach Seminars. 2008. Vol. 37. P. 63-120.
(check this in PDF content)
75
Goodman P.D., Barlow E.T., Crapo P.M., Mohammad S.F., Solen K.A. Computational Model of Device-Induced Thrombosis and Thromboembolism // Annals of Biomedical Engineering. 2005. Vol. 33, iss. 6. P. 780-797. DOI: 10.1007/s10439-005-2951-z
(check this in PDF content)
76
Овсянников Б.В., Селифонов В.С., Черваков В.В. Расчет и проектирование шнекоцентробежного насоса: учеб. пособие. М.: Изд-во МАИ, 1996. 72 с.
(check this in PDF content)
77
Carmeda® BioActive Surface: Broshure. Medtronic, Inc., USA, 2010. 12 p.
(check this in PDF content)
78
Impella 2.5 with the Impella Console: Circulatory Support System: Instructions for Use and Clinical Reference Manual: Abiomed Europe Gmbh, Document No. 0046-9027 Rev. A., 2010. 140 p.
(check this in PDF content)
79
Agarwal S., High K.M. Newer-generation ventricular assist devices // Best Practice and Research Clinical Anaesthesiology. 2012. Vol. 26. P. 117-130.
(check this in PDF content)
80
Wu J., Paden B.E., Borovetz H.S., Antaki J.F. Computational Fluid Dynamics Analysis of Blade Tip Clearance on Hemodynаmic Performance and Blood Damage in a Centrifugal Ventricular Assist Device // Artificial Organs. 2010. Vol. 34, iss. 5. P. 402-411. DOI: 10.1111/j.1525-1594.2009.00875.x
(check this in PDF content)
81
Dongsheng Z. Development of an enclosed-impeller ventricular assist device using self-bearing motor: Degree of Doctor of Philosophy. School of Mechanical and Aerospace Engineering, 2008. 179 p.
(check this in PDF content)
82
Wu Y., Allaire P., Tao G., Olsen D. Modeling, Estimation and Control of Cardiovascular Systems with a Left Ventricular Assist Device // Proc. of the 2005 American Control Conference. Vol. 6. Portland, Oregon, 2005. P. 3841-3846.
(check this in PDF content)
83
Tavoularis S., Ahmed N.U., Madrane A., Vaillancourt R. Towards Optimal Control of Blood Flow in Artificial Hearts // Cardiovascular Engineering. 2003. Vol. 8, no. 1-2. P. 20-31.
(check this in PDF content)
84
Sherman C., Daly B., Dasse K., Clay W., Szycher M., Handrahan J., Schuder J., Hopkins R., Poirier V., Haudenschild C. Research and Development: Systems for Transmitting Energy through Intact Skin: Final Technical Report No. N01-HV-0-2903-4. National Heart, Lung and Blood Institute, 1984. 211 p.
(check this in PDF content)
85
Barteld K.P. Implantable electromechanical displacement blood pumps: systematic design and validation methods: Dissertation. Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2007. 157 p.
(check this in PDF content)
86
Reesink K.D. Modelling and Control Aspects of Left Ventricular Assist. Technische Universiteit Eindhoven, 2002. 109 p.
(check this in PDF content)
87
Созданное с участием МИЭТа отечественное "искусственное сердце" впервые имплантировали человеку. Режим доступа: http://imm.org.ua/mednews/Sozdannoe-s-uchastiemMIETa-otechestvennoe-iskusstvennoe-serdce-vpervie-implantirovali-cheloveku.html (дата обращения 21.01.2014).
(check this in PDF content)
88
3D-принтеры. Режим доступа: http://habrahabr.ru/hub/3d-printers/ (дата обращения 17. 01.2014).
(check this in PDF content)
89
Батогов А. Создан 3D-принтер, способный печатать углеволокном. Режим доступа: http://hinews.ru/periferiya/sozdan-3d-printer-sposobnyj-pechatat-uglevoloknom.html (дата обращения 01.02.2014).
(check this in PDF content)
90
Скляров А.А. Прикладные методы синергетического синтеза иерархического управления роботами: автореф. дис. ... канд. техн. наук. Таганрог, 2013. 20 с.
(check this in PDF content)
91
Bezuglov A., Kolesnikov A., Kondratiev I., Vargas J. Synergetic Control Theory Approach for Solving Systems of Nonlinear Equations // Proc. of the 9 th World Multi-Conference on Systemics, Cybernetics and Informatics, 2005. P. 121-126.
(check this in PDF content)
92
Глазунов В.Ф., Пикунов В.В., Репин А.А. Методика синтеза системы управления синхронным двигателем на основе синергетического подхода // Вестник Ивановского Государственного Энергетического Университета. 2005. No 3. Режим доступа: http://vestnik.ispu.ru/sites/vestnik.ispu.ru/files/publications/12-15.pdf (дата обращения 01.02.2014). .
(check this in PDF content)
93
Глазырин А.С. Бездатчиковое управление асинхронным электроприводом с синергетическим регулятором // Известия Томского политехнического университета. 2012 . Т. 321, No 4: Энергетика. С. 107-111. Режим доступа: http://www.lib.tpu.ru/fulltext/v/Bulletin_TPU/2012/v321/i4/24.pdf (дата обращения 01.02.2014)..
(check this in PDF content)
94
Колесников А.Л., Веселов П.Е., Попов А.Л., Колесников Ал.А., Кузыменко А.А. Синергетическое управление нелинейными электромеханическими системами. М.: Испо-Сервис, 2000. 248 с.
(check this in PDF content)
95
Santi E., Dougal R., Li D., Monti A., Prodduttur K. Synergetic Control for Power Electronics Applications: A Comparison with the Sliding Mode Approach // Journal of Circuits, Systems, and Computers. 2004. Vol. 13, no. 4. P. 737-760.
(check this in PDF content)
96
Синицын А.С., Кузьменко А.А. Использование принципа интегральной адаптации для повышения устойчивости системы возбуждения синхронного генератора // Технологии техносферной безопасности. 2013. No 3 (49). Режим доступа: http://academygps.ru/img/UNK/asit/ttb/2013-3/03-03-13.ttb.pdf (дата обращения 01.02.2014).
(check this in PDF content)