The 22 linked references in paper A. Shirshov A., I. Kiselev A., S. Voronov A., V. Ma, А. Ширшов А., В. Ма ., И. Киселёв А., С. Воронов А. (2016) “Имитационная динамическая модель процесса шлифования сложнопрофильных деталей. Развитие методов моделирования // Numerical Simulation of a Grinding Process Model for the Spatial Work-pieces: Development of Modeling Techniques” / spz:neicon:technomag:y:2015:i:5:p:40-58

  1. Tonshoff H.K., Friemuth T., Becker J.C. Process monitoring in grinding // CIRP Annals - Manufacturing Technology. 2002. Vol. 51, no. 2. P. 551-571. DOI: 10.1016/S00078506(07)61700-4
  2. Subramanian K., Lindsay R.P. A Systems Approach for the Use of Vitrified Bonded Superabrasive Wheels for Precision Production Grinding // Trans. ASME. Journal of Manufacturing Science and Engineering. 1992. Vol. 114, no. 1. P. 41-52. DOI: 10.1115/1.2899757
  3. Salisbury E.J., Domala K.V., Moon K.S., Miller M.H., Sutherland J.W. A three-dimensional model for the surface texture in surface grinding, Part 1: Surface generation model // Journal of Manufacturing Science and Engineering. 2001. Vol. 123. P. 576-581. DOI: 10.1115/1.1391427
  4. Anderson R.O. Detecting and eliminating collisions in NC machining // Computer-Aided Design. 1978. Vol. 10, no. 2. P. 231-237. DOI: 10.1016/0010-4485(78)90058-1
  5. Hook T.V. Real-time shaded NC milling display // ACM SIGGRAPH Computer Graphics. 1986. Vol. 20, no. 4. P. 15-20. DOI: 10.1145/15922.15887
  6. Hsu P.-L., Yang W.-T. Realtime 3D simulation of 3-axis milling using isometric projection // Computer-Aided Design. 1993. Vol. 25, no. 4. P. 215-224. DOI: 10.1016/00104485(93)90052-P
  7. Takata S., Tsai M.D., Inui M., Sata T. A cutting simulation system for machinability evaluation using a workpiece model // CIRP Annals - Manufacturing Technology. 1989. Vol. 38, no. 1. P. 417-420. DOI: 10.1016/S0007-8506(07)62736-X
  8. Kim G.M., Cho P.J., Chu C.N. Cutting force prediction of sculptured surface ball-end milling using Z-map // International Journal of Machine Tools and Manufacture. 2000. Vol. 40, no. 2. P. 277-291. DOI: 10.1016/S0890-6955(99)00040-1
  9. Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system // International Journal of Machine Tools and Manufacture. 2003. Vol. 43, no. 5. P. 453462. DOI: 10.1016/S0890-6955(02)00302-4
  10. Salisbury E.J., Domala K.V., Moon K.S., Miller M.H., Sutherland J.W. A three-dimensional model for the surface texture in surface grinding, Part 2: Grinding wheel surface texture model // Trans. ASME. Journal of Manufacturing Science and Engineering. 2001. Vol.123. P. 582-590. DOI: 10.1115/1.1391428
  11. Torrance A.A. Modelling abrasive wear // Wear. 2005. Vol. 258, no. 1. P. 281-293. DOI: 10.1016/j.wear.2004.09.065
  12. Xuekun Li, Yiming Rong. Framework of grinding process modeling and simulation based on microscopic interaction analysis // Robotics and Computer-Integrated Manufacturing. 2011. Vol. 27, no. 2. P. 471-478. DOI: 10.1016/j.rcim.2010.06.029
  13. Chen X., Rowe W.B. Analysis and simulation of the grinding process. Part II: Mechanics of grinding // International Journal of Machine Tools and Manufacture. 1996. Vol. 36, no. 8. P. 883-896. DOI: 10.1016/0890-6955(96)00117-4
  14. Sakakura M., Tsukamoto S., Fujiwara T., Inasaki I. Visual simulation of grinding process // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008. Vol. 222, no. 10. P. 1233-1239. DOI: 10.1243/09544054JEM1032
  15. Chen X., Rowe W.B. Analysis and simulation of the grinding process. Part I: Generation of the grinding wheel surface // International Journal of Machine Tools and Manufacture. 1996. Vol. 36, no. 8. P. 871-882. DOI: 10.1016/0890-6955(96)00116-2
  16. Li K., Liao W. Modelling of ceramic grinding processes Part I. Number of cutting points and grinding forces per grit // Journal of Materials Processing Technology. 1997. Vol. 65, no. 1. P. 1-10. DOI: 10.1016/0924-0136(95)02232-5
  17. Hou Z.B., Komanduri R. On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process // International Journal of Machine Tools and Manufacture. 2003. Vol. 43, no. 15. P. 1579-1593. DOI: 10.1016/S0890-6955(03)00186-X
  18. Weinert K., Blum H., Jansen T., Rademacher A. Simulation based optimization of the NCshape grinding process with toroid grinding wheels // Production Engineering. 2007. Vol. 1, no. 3. P. 245–252. DOI: 10.1007/s11740-007-0042-8
  19. Doman D.A., Warkentin A., Bauer R. Finite element modeling approaches in grinding // International Journal of Machine Tools and Manufacture. 2009. Vol. 49, no. 2. P. 109-116. DOI: 10.1016/j.ijmachtools.2008.10.002
  20. Lin B., Yu S.Y., Wang S.X. An experimental study on molecular dynamics simulation in nanometer grinding // Journal of Materials Processing Technology. 2003. Vol. 138, no. 1. P. 484-488. DOI: 10.1016/S0924-0136(03)00124-9
  21. Merrit H.E. Theory of Self-Excited Machine Tool Chatter: Contribution to Machine-Tool Chatter Research // Trans. ASME. Journal of Manufacturing Science and Engineering. 1965. Vol. 87, no. 4. P. 447-454. DOI: 10.1115/1.3670861
  22. Kiselev I., Voronov S. Methodic of Rational Cutting Conditions Determination for 3-D Shaped Detail Milling Based on the Process Numerical Simulation // Proc. ASME. 46391; Vol. 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2014. Art. no. V006T10A075. DOI: 10.1115/DETC2014-34894