The 21 linked references in paper A. Guskov M., E. Banin P., F. Sorokin D., А. Гуськов М., Е. Банин П., Ф. Сорокин Д. (2016) “Анализ современных подходов к проектированию искусственных желудочков сердца роторного типа // Analysis of Contemporary Methods for Designing Rotary Type Ventricular Assist Devices” / spz:neicon:technomag:y:2015:i:2:p:250-268

  1. Agarwal S., High K.M. Newer-generation ventricular assist devices // Best Practice & Research Clinical Anaesthesiology. 2012. Vol. 26, no. 2. P. 117-130. DOI: 10.1016/j.bpa.2012.01.003
  2. Hetzer R., Hennig E. Mechanical Circulatory Support Systems // In: Springer Handbook of Medical Technology / ed. by R. Kramme, K.-P. Hoffmann, R.S. Pozos. Springer Berlin Heidelberg, 2011. С. 723-748. DOI: 10.1007/978-3-540-74658-4_36
  3. Богданова Ю.В., Гуськов А.М. Особенности проектирования устройства искусственного желудочка сердца: обзор работ // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014. No 3. С. 162-187. DOI: 10.7463/0314.0705250 (the paper at Socionet)
  4. Kamdar F., John R. Surgical Mechanical Circulatory Support // In: Coronary Heart Disease / ed. by Z. Vlodaver, R.F. Wilson, D.J. Garry. Springer US, 2012. С. 455-469. DOI: 10.1007/978-1-4614-1475-9_26
  5. Apel J., Neudel F., Reul H. Computational fluid dynamics and experimental validation of a microaxial blood pump //ASAIO Journal. 2001. Vol. 47, no. 5. P. 552-558. DOI: 10.1097/00002480-200109000-00031
  6. O’Neill W.W., Schreiber T., Wohns D.H.W., Rihal C., Naidu S.S., Civitello A.B., Dixon S.R., Massaro J.M., Maini B., Ohman E.M. The Current Use of Impella 2.5 in Acute Myocardial Infarction Complicated by Cardiogenic Shock: Results from the USpella Registry // Journal of Interventional Cardiology. 2014. Vol. 27, no. 1. P. 1-11. DOI: 10.1111/joic.12080
  7. Sibbald M., Dzavik V. Severe hemolysis associated with use of the impella LP 2.5 mechanical assist device // Catheterization and Cardiovascular Interventions. 2012. Vol. 80, no. 5. P. 840-844. DOI: 10.1002/ccd.24280
  8. John R. Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices // Seminars in Thoracic and Cardiovascular Surgery. 2008. Vol. 20, no. 3. P. 264272. DOI: 10.1053/j.semtcvs.2008.08.001
  9. Araki K., Taenaka Y., Masuzawa T., Tatsumi E., Wakisaka Y., Watari M., Nakatani T., Akagi H., Baba Y., Anai H., Park Y.H., Eya K. A flow visualization study of the NCVC centrifugal blood pump // Artificial Organs. 1994. Vol. 18, no. 9. P. 669-672. DOI: 10.1111/j.1525-1594.1994.tb03397.x
  10. Mizunuma H., Nakajima R. Experimental study on shear stress distributions in a centrifugal blood pump //Artificial Organs. 2007. Vol. 31, no. 7. P. 550-559. DOI: 10.1111/j.15251594.2007.00421.x
  11. Wu Z.J., Gottlieb R.K., Burgreen G.W., Holmes J.A., Borzelleca D.C., Kameneva M.V., Griffith B.P., Antaki J.F. Investigation of fluid dynamics within a miniature mixed flow blood pump // Experiments in Fluids. 2001. Vol. 31, no. 6. P. 615-629. DOI: 10.1007/s003480100308
  12. Horie M., Yamamura K. Visualization of main and leakage flow in magnetically suspended centrifugal blood pump // Journal of Visualization. 2012. Vol. 15, no. 4. P. 353-361. DOI: 10.1007/s12650-012-0137-y
  13. Chua L.P., Ong K.S., Song G. Study of Velocity and Shear Stress Distributions in the Impeller Passages and the Volute of a Bio‐centrifugal Ventricular Assist Device // Artificial Organs. 2008. Vol. 32, no. 5. P. 376-387. DOI: 10.1111/j.1525-1594.2008.00556.x
  14. Ahmed S., Funakubo A., Sakuma I., Fukui Y., Dohi T. Experimental study on hemolysis in centrifugal blood pumps: improvement of flow visualization method // Artificial Organs. 1999. Vol. 23, no. 6. P. 542-546. DOI: 10.1046/j.1525-1594.1999.06399.x
  15. Kaufmann T.A.S., Gregory S.D., Büsen M.R., Tansley G.D., Steinseifer U. Development of a Numerical Pump Testing Framework // Artificial Organs. 2014. Vol. 38, no. 9. P. 783-790. DOI: 10.1111/aor.12395
  16. Triep M., Brücker C., Schröder W., SiessT. Computational Fluid Dynamics and Digital Particle Image Velocimetry Study of the Flow Through an Optimized Micro‐axial Blood Pump // Artificial Organs. 2006. Vol. 30, no. 5. P. 384-391. DOI: 10.1111/j.15251594.2006.00230.x
  17. Day S.W., McDaniel J.C., Wood H.G., Allaire P.E., Song X., Lemire P.P., Miles S.D. A prototype HeartQuest ventricular assist device for particle image velocimetry measurements // Artificial Organs. 2002. Vol. 26, no. 11. P. 1002-1005. DOI: 10.1046/j.15251594.2002.07124.x
  18. Yang X., Gui X., Huang H., Shen Y., Yu Z., Zhang Y. Particle image velocimetry experimental and computational investigation of a blood pump // Journal of Thermal Science. 2012. Vol. 21, no. 3. P. 262-268. DOI: 10.1007/s11630-012-0543-4
  19. Su B., Chua L.P., Lim T.M., Zhou T. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics // Artificial Organs. 2010. Vol. 34, no. 9. P. 745-759. DOI: 10.1111/j.1525-1594.2010.01099.x
  20. Zhang Y., Zhan Z., Gui X.-M., Sun H.-S., Zhang H., Zheng Z., Zhou J.-Y., Zhu X.-D., Li G.-R., Hu S.-S., Jin D.-H. Design optimization of an axial blood pump with computational fluid dynamics // ASAIO Journal. 2008. Vol. 54, no. 2. P. 150-155. DOI: 10.1097/MAT.0b013e318164137f
  21. Untaroiu A., Wood H.G., Allaire P.E., Throckmorton A.L., Day S., Patel S.M., Ellman P., Tribble C., Olsen D.B. Computational design and experimental testing of a novel axial flow LVAD // ASAIO Journal. 2005. Vol. 51, no. 6. P. 702-710. DOI: 10.1097/01.mat.0000186126.21106.27