The 23 linked references in paper G. Kuvyrkin N., I. Savelieva Yu., V. Zarubin S., В. Зарубин С., Г. Кувыркин Н., И. Савельева Ю. (2016) “Оценка методом самосогласования температурного коэффициента линейного расширения композита с дисперсными включениями // Self-Consistency Method to Evaluate a Linear Expansion Thermal Coefficient of Composite with Dispersed Inclusions” / spz:neicon:technomag:y:2015:i:2:p:197-215

  1. Anglin B.S., Lebensohn R.A., Rollett A.D. Validation of a numerical method based on Fast Fourier Transforms for heterogeneous thermoelastic materials by comparison with analytical solutions.Computational Materials Science, 2014, vol. 87, pp. 209{217. DOI: 10.1016/j.commatsci.2014.02.027
  2. Lv J., Yang K., Zhang H., Yang D., Huang Y. A hierarchical multiscale approach for predicting thermo-electro-mechanical behavior of heterogeneous piezoelectric smart materials.Computational Materials Science, 2014, vol. 87, pp. 88{99. DOI:10.1016/j.commatsci.2014.01.059
  3. Hill R. A self-consistent mechanics of composite materials.Journal of the Mechanics and Physics of Solids, 1965, vol. 13, no. 4, pp. 213{222. DOI:10.1016/0022-5096(65)90010-4
  4. Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Evaluation of effective thermal conductivity of composites with ball inclusions by the method of self-consistency.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 9, pp. 435{444. DOI:10.7463/0913.0601512(in Russian).
  5. Zarubin V.S., Kuvyrkin G.N., Savel'eva I.Yu. Evaluation of effective thermal conductivity of unidirectional fiber composites by the method of self-consistency.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 519{532. DOI:10.7463/1113.0622927(in Russian).
  6. Zarubin V.S., Kuvyrkin G.N. Estimating of the Elastic Properties of the Composite with Anisotropic Ball Inclusions.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 8, pp. 237{255. DOI:10.7463/0814.0720691(in Russian).
  7. Lur'e S.A., Mironov Yu.M., Nelyub V.A., Borodulin A.S., Chudnov I.V., Buyanov I.A., Solyaev Yu.O. Modeling of dependences of physical-mechanical properties on parameters of micro- and nanostructure polymer composite materials.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2012, no. 6, pp. 38{60. DOI: 10.7463/0612.0431339(in Russian).
  8. Ivanisenko Y., Darbandi A., Dasgupta S., Kruk R., Hahn H. Bulk Nanostructured Materials: Non-Mechanical Synthesis.Advanced Engineering Materials, 2010, vol. 12, no. 8, pp. 666{ 676. DOI:10.1002/adem.201000131
  9. Pruger S., Mehlhorn L., Muhlich U., Kuna M. Study of Reinforcing Mechanisms in TRIP-Matrix Composites under Compressive Loading by Means of Micromechanical Simulations.Advanced Engineering Materials, 2013, vol. 15, no. 7, pp. 542{549. DOI: 10.1002/adem.201200323
  10. Weise J., Salk N., Jehring U., Baumeister J., Lehmhus D., Bayoumi M.A. Influence of Powder Size on Production Parameters and Properties of Syntactic Invar Foams Produced by Means of Metal Powder Injection Moulding.Advanced Engineering Materials, 2013, vol. 15, no. 3, pp. 118{122. DOI:10.1002/adem.201200129
  11. Cunha S., Aguiar J.B., Ferreira V.M., Tadeu A. Influence of the Type of Phase Change Materials Microcapsules on the Properties of Lime-Gypsum Thermal Mortars.Advanced Engineering Materials, 2014, vol. 16, no. 4, pp. 433{441. DOI:10.1002/adem.201300278
  12. Jin H.-J., Weissmuller J. Bulk Nanoporous Metal for Actuation.Advanced Engineering Materials, 2010, vol. 12, no. 8, pp. 714{723. DOI:10.1002/adem.200900329
  13. Schmidt K., Becker J. Generating Validated 3D Models of Microporous Ceramics.Advanced Engineering Materials, 2013, vol. 15, no. 1{2, pp. 40{45. DOI:10.1002/adem.201200097
  14. Cho Y.J., Wook Jin Lee W.J., Park S.K., Park Y.H. Effect of Pore Morphology on Deformation Behaviors in Porous Al by FEM Simulations.Advanced Engineering Materials, 2013, vol. 15, no. 3, pp. 166{169. DOI:10.1002/adem.201200145
  15. Deqing W. Relation of Cell Uniformity and Mechanical Property of a Close Cell Aluminum Foam.Advanced Engineering Materials, 2013, vol. 15, no. 3, pp. 175{179. DOI: 10.1002/adem.201200135
  16. Montero-Chac-on F., Marin-Montin J., Medina F. Mesomechanical characterization of porosity in cementitious composites by means of a voxel-based finite element model.Computational Materials Science, 2014, vol. 90, pp. 157{170. DOI:10.1016/j.commatsci.2014.03.066
  17. Goehler H., Jehring U., Meinert J., Hauser R., Quadbeck P., Kuemmel K., Stephani G., Kieback B. Functionalized Metallic Hollow Sphere Structures.Advanced Engineering Materials, 2014, vol. 16, no. 3, pp. 335{339. DOI:10.1002/adem.201300057
  18. Schumacher Th.C., Klein T.Y., Treccani L., Rezwan K. Rapid Sintering of Porous Monoliths Assembled from Microbeads with High Specific Surface Area and Multimodal Porosity.Advanced Engineering Materials, 2014, vol. 16, no. 2, pp. 151{155. DOI: 10.1002/adem.201300220
  19. Shumov A.V., Plakhotnichenko A.A., Titova M.V. Composite Technology in Radar Equipment. Dopler Meteo Radar Reflector Device.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 12, pp. 593{606. DOI: 10.7463/1214.0749463(in Russian).
  20. Sinev L.S. Mechanical Stresses Estimation in Silicon and Glass Bonded at Elevated Temperature.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 12, pp. 951{965. DOI:10.7463/1214.0745310(in Russian).
  21. Dimitrienko Yu.I., Sborshchikov S.V., Egoleva E.S., Matveeva A.A. Modeling of thermoelastic properties of composites with alumino-chromic phosphate matrices.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 497{518. DOI:10.7463/1113.0623564(in Russian).
  22. Dimitrienko Yu.I., Sborshchikov S.V., Belenovskaya Yu.V., Aniskovich V.A., Perevislov S.N. Modeling microstructural destruction and strength of ceramic composites based on the reactionbonded SiC.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 475{496. DOI:10.7463/1113.0659438(in Russian).
  23. Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborshchikov S.V., Prozorovskii A.A. Multiscale Finite-Element Modeling of Sandwich Honeycomb Composite Structures.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 7, pp. 243{265. DOI:10.7463/0714.0717805(in Russian).