The 11 linked references in paper A. Pоlyanskii R., A. Romanov S., A. Semikolenov V., А. Полянский Р., А. Романов С., А. Семиколенов В. (2016) “Асимптотический закон формы стекающей жидкой пленки при частичном смачивании // Asymptotic Law of the Falling Liquid Film Form in Partial Wetting” / spz:neicon:technomag:y:2015:i:1:p:276-291

  1. Жен П.Ж. Смачивание: статика и динамика // Успехи физических наук. 1987. Т. 151, No 4. С. 619-681. DOI: 10.3367/UFNr.0151.198704c.0619
  2. Radoev B., Stöckelhuber K.W., Tsekov R., Letocart P. Wetting film dynamics and stability // In: Colloid Stability and Application in Pharmacy. Vol. 3 / ed. by T.F. Tadros. WileyVCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007. P. 151-172. DOI: 10.1002/9783527631117.ch6
  3. Saramago B. Thin liquid wetting films // Current Opinion in Colloid & Interface Science. 2010. Vol. 15, no. 5. P. 330-340. DOI: 10.1016/j.cocis.2010.05.005
  4. Ren W., Hu D. Continuum models for the contact line problem // Physics of Fluids. 2010. Vol. 22, no. 10. Art. no. 102103. DOI: 10.1063/1.3501317
  5. Patra A., Bandyopadhyay D., Tomar G., Sharma A., Biswas G. Instability and dewetting of ultrathin solid viscoelastic films on homogeneous and heterogeneous substrates // Journal of Chemical Physics. 2011. Vol. 134, no. 6. Art. no. 064705. DOI: 10.1063/1.3554748
  6. Colosqui C.E., Kavousanakis M.E., Papathanasiou A.G., Kevrekidis I.G. Mesoscopic model for microscale hydrodynamics and interfacial phenomena: slip, films, and contact-angle hysteresis // Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. 2013. Vol. 87, no. 1. Art. no. 013302. DOI: 10.1103/PhysRevE.87.013302
  7. Nikolov A., Wasan D. Wetting-dewetting films: the role of structural forces // Advances in Colloid and Interface Science. 2014. Vol. 206. P. 207-221. DOI: 10.1016/j.cis.2013.08.005
  8. Boinovich L., Emelyanko A. The prediction of wettability of curved surfaces on the basis of the isotherms of the disjoining pressure // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011. Vol. 383, iss. 1-3. P. 10-16. DOI: 10.1016/j.colsurfa.2010.12.020
  9. Snoeijer J.H., Andreotti B. Moving Contact Lines: Scales, Regimes, and Dynamical Transitions // Annual Review of Fluid Mechanics. 2013. Vol. 45. P. 269-292. DOI: 10.1146/annurev-fluid-011212-140734
  10. Sibley D.N., Nold A., Savva N., Kalliadasis S. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading // Journal of Engineering Mathematics. 2014. Vol. 94, iss. 1. P. 19-41. DOI: 10.1007/s10665-014-9702-9
  11. Chaudhury K., Acharya P.V., Chakraborty S. Influence of disjoining pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical capillaries // Physical Review E. 2014. Vol. 89. Art. no. 053002. DOI: