The 20 linked references in paper A. Karpenko P., I. Shibitov A., S. Groshev V., V. Belous V., А. Карпенко П., В. Белоус В., И. Шибитов А., С. Грошев В. (2016) “Программные системы для оценки качества Парето-аппроксимации в задаче многокритериальной оптимизации. Обзор // Programme systems to estimate the Pareto-approximation quality in the problem of multi-criteria optimization. A review.” / spz:neicon:technomag:y:2014:i:4:p:300-320

  1. Карпенко А.П., Семенихин А.С., Митина Е.В. Популяционные методы аппроксимации множества Парето в задаче многокритериальной оптимизации // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012. No 4. Режим доступа: (дата обращения 01.03.2014).
  2. Agrawal S., Pratap A., Meyarivan T., Deb K. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II // In: Parallel Problem Solving from Nature PPSN VI. Springer Berlin Heidelberg, 2000. P. 849-858. DOI: 10.1007/3-54045356-3_83
  3. Reyes Sierra M., Coello Coello C.A. Improving PSO-based Multi-Objective Optimization using Crowding, Mutation and e-Dominance // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2005. P. 505-519. DOI: 10.1007/978-3-540-31880-4_35
  4. Emmerich M., Beume N., Naujoks B. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2005. P. 62-76. DOI: 10.1007/978-3-540-31880-4_5
  5. Barone L., While L., Huband L., Hingston S. Use of the WFG Toolkit and PISA for Comparison of MOEAs // Proceedings of IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 2007. P. 382-389. DOI: 10.1109/MCDM.2007.369117
  6. Laumanns M., Thiele L., Zitzler E. Running Time Analysis of Multiobjective Evolutionary Algorithms on Pseudo-Boolean Functions // IEEE Transactions on Evolutionary Computation. 2004. Vol. 8, no. 2. P. 170–182. DOI: 10.1109/TEVC.2004.823470
  7. Zitzler E., Thiele L., Laumanns M., Fonseca C.V., Fonseca V.G. Performance Assessment of Multiobjective Optimizers: An Analysis and Review // IEEE Transactions of Evolutionary Computation. 2003. Vol. 7, no. 2. P. 117-132. DOI: 10.1109/TEVC.2003.810758
  8. Beume N. SMS-EMOA: Multiobjective selection based on dominated hypervolume // European Journal of Operational Research. 2007. Vol. 181, no. 3. P. 1653-1669.
  9. Li H., Zhang Q. Multiobjective Optimization problems with Complicated Pareto Sets, MOEA/D and NSGA-II // IEEE Transactions on Evolutionary Computation. 2009. Vol. 13, no. 2. P. 284-302. DOI: 10.1109/TEVC.2008.925798
  10. Zitzler E., Kunzli S. Indicator-based selection in multi objective search // In: Parallel Problem Solving from Nature - PPSN VIII. Springer Berlin Heidelberg, 2004. P. 832-842. DOI: 10.1007/978-3-540-30217-9_84 (Ser. Lecture Notes in Computer Science; vol. 3242).
  11. Eskandari H., Geiger C.D., Lamont G.B. FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems // In: Evolutionary MultiCriterion Optimization. Springer Berlin Heidelberg, 2007. P. 141-155. DOI: 10.1007/978-3540-70928-2_14
  12. Durillo J.J., Nebro A.J., Luna F., Alba E. Solving Three-Objective Optimization Problems. Using a new Hybrid Cellular Genetic Algorithm // In: Parallel Problem Solving from Nature - PPSN X. Springer Berlin Heidelberg, 2008. P. 661-670. DOI: 10.1007/978-3-540-877004_66
  13. Vavak F., Fogarty T.C. Comparison of Steady State and Generational Genetic Algorithms for Use in Nonstationary Environments // Proc. of the IEEE International Conference on Evolutionary Computation, 1996. P. 192-195. DOI: 10.1109/ICEC.1996.542359
  14. Nebro J., Durillo J.J., Coello Coello C.A. Analysis of Leader Selection Strategies in a MultiObjective Particle Swarm Optimizer // 2013 IEEE Congress on Evolutionary Computation, 2013. P. 3153 - 3160. DOI: 10.1109/CEC.2013.6557955
  15. Nebro A.J., Luna F., Alba E., Dorronsoro B., Durillo J.J., Beham A. AbYSS. Adapting Scatter Search to Multiobjective Optimization // IEEE Transactions on Evolutionary Computation. 2006. Vol. 12, no. 4. P. 439-457. DOI: 10.1109/TEVC.2007.913109
  16. Bleuler S., Laumanns M., Thiele L., Zitzler E. PISA—A Platform and Programming Language Independent Interface for Search Algorithms // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2003. P. 494–508. DOI: 10.1007/3-540-36970-8_35
  17. Liefooghe L., Jourdan T., Legrand J., Talbi G. ParadisEO-MOEO: A Software Framework for Evolutionary Multi-objective Optimization // In: Advances in Multi-objective Nature Inspired Computing. Springer Berlin Heidelberg, 2010. P. 87-117. DOI: 10.1007/978-3-64211218-8_5 (Ser. Studies in Computational Intelligence; vol. 272).
  18. Basseur M., Burke E.K. Indicator-based multi-objective local search // IEEE Congress on Evolutionary Computation (CEC'2007), 2007. P. 3100-3107. DOI: 10.1109/CEC.2007.4424867
  19. Liefooghe J., Humeau S., Mesmoudi S., Jourdan L. On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems // Journal of Heuristics. 2011. Vol. 18, iss. 2. P. 317-352. DOI: 10.1007/s10732-011-9181-3
  20. Wagner S., Kronberger G., Beham A., Kommenda M., Scheibenpflug A., Pitzer E., Vonolfen S., Kofler M., Winkler S., Dorfer V., Affenzeller M. Architecture and Design of the HeuristicLab Optimization Environment // In: Advanced Methods and Applications in Computational Intelligence. Springer International Publishing, 2014. P. 197-261. DOI: 10.1007/978-3-319-01436-4_10 (Ser. Topics in Intelligent Engineering and Informatics;