The 15 linked references in paper B. Knyazev A., V. Chernenkiy M., Б. Князев А., В. Черненький М. (2016) “Сверточное разреженное представление изображений для анализа статических и динамических образов // Convolutional Sparse Coding for Static and Dynamic Images Analysis” / spz:neicon:technomag:y:2014:i:1:p:664-695

  1. Olshausen B., Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images // Nature. 1996. No. 381 (6583). P. 607-609. DOI: 10.1038/381607a0
  2. Petkov N. Biologically motivated computationally intensive approaches to image pattern recognition // Future Generation Computer Systems. 1995. Vol. 11, iss. 4-5. P. 451-465. DOI: 10.1016/0167-739X(95)00015-K
  3. Ranzato M., Fu Jie Huang, Boureau Y.-L., LeCun Y. Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR’07). IEEE, 2007. P. 1-8. DOI: 10.1109/CVPR.2007.383157
  4. Labusch K., Barth E., Martinetz T. Simple Method for High-Performance Digit Recognition Based on Sparse Coding // IEEE Transactions on Neural Networks. 2008. Vol. 19, no. 11. P. 1985-1989. DOI: 10.1109/TNN.2008.2005830
  5. Raina R., Battle A., Lee H., Packer B., Y. Ng A. Self-taught learning: transfer learning from unlabeled data // In: Proceedings of the 24th International Conference on Machine Learning (ICML '07). ACM, New York, NY, USA, 2007. P. 759-766. DOI: 10.1145/1273496.1273592
  6. Bristow H., Eriksson A., Lucey S. Fast Convolutional Sparse Coding // 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '13). IEEE Computer Society, Washington, DC, USA, 2013. P. 391-398. DOI: 10.1109/CVPR.2013.57
  7. LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition // Proceedings of the IEEE. 1998. Vol. 86, no. 11. P. 2278-2324. DOI: 10.1109/5.726791
  8. Cireşan D., Meier U., Schmidhuber J. Multi-column Deep Neural Networks for Image Classification // 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 2012. P. 3642-3649. DOI: 10.1109/CVPR.2012.6248110
  9. Bruna J., Mallat S. Invariant Scattering Convolution Networks // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013. Vol. 35, iss. 8. P. 1872-1886. DOI: 10.1109/TPAMI.2012.230
  10. Hinton G.E., Osindero S., Teh Y.-W. A Fast Learning Algorithm for Deep Belief Nets // Neural Computation. 2006. Vol. 18, no. 7. P. 1527-1554. DOI: 10.1162/neco.2006.18.7.152
  11. Viola P., Jones M. Rapid object detection using a boosted cascade of simple features // 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’01). Vol. 1. IEEE, 2001. P. 511-518. DOI: 10.1109/CVPR.2001.990517
  12. Князев Б.А., Черненький В.М. Методика и модель кластеризации паттернов двигательной активности лица как преобразований метаграфов // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2014. No 4. С. 34-54.
  13. Lindeberg T. A computational theory of visual receptive fields // Biological Cybernetics. 2013. Vol.107, iss. 6. P. 589-635. DOI: 10.1007/s00422-013-0569-z
  14. Cortes C., Vapnik V. Support-Vector Networks // Machine Learning. 1995. Vol. 20, no. 3. P. 273-297. DOI: 10.1007/BF00994018
  15. Chang C.-C., Lin C.-J. LIBSVM: A library for support vector machines // ACM Transactions on Intelligent Systems and Technology. 2011. Vol. 2, iss. 3. Article no. 27. DOI: 10.1145/1961189.1961199 Science and Education of the Bauman MSTU,