The 11 linked references in paper A. Trofimov G., B. Velichkovsky M., I. Kolodkin V., V. Ushakov L., А. Трофимов Г., Б. Величковский М., В. Ушаков Л., И. Колодкин В. (2016) “Метод сегментации пространственно-распределенных временных рядов на основе бегущих волн // Spatial Time Series Segmentation Method Based on Traveling Waves” / spz:neicon:technomag:y:2014:i:0:p:114-136

  1. Abonyi J., Feil B. Cluster Analysis for Data Mining and System Identification. Birkhäuser Basel Publ., 2007. 306 p. DOI: 10.1007/978-3-7643-7988-9
  2. Seiffert U.S., Jain L.C., eds. Self-organizing Neural Networks: Recent Advances and Applications. Physica-Verlag HD Publ., 2002. (Ser. Studies in Fuzziness and Soft Computing; vol. 78). DOI: 10.1007/978-3-7908-1810-9
  3. Liao T. Warren. Clustering of time series data—a survey // Pattern Recognition. 2005. Vol. 38, no. 11. P. 1857-1874. DOI: 10.1016/j.patcog.2005.01.025
  4. Varstal M., Millán J.R., Heikkonen J. A recurrent self-organizing map for temporal sequence processing // In: Artificial Neural Networks—ICANN'97. Springer Berlin Heidelberg, 1997. P. 421-426. (Ser. Lecture Notes in Computer Science; vol. 1327). DOI: 10.1007/BFb0020191
  5. Pusheng Zhang, Yan Huang, Shashi Shekhar, Vipin Kumar. Correlation analysis of spatial time series datasets: A filter-and-refine approach // In: Advances in Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, 2003. P. 532-544. (Ser. Lecture Notes in Computer Science; vol. 2637). DOI: 10.1007/3-540-36175-8_53
  6. Park J.Y. The spatial analysis of time series. Working Papers 2005-07. Rice University, Department of Economics, 2005. Available at: http://econpapers.repec.org/paper/eclriceco/2005-07.htm , accessed 01.09.2014.
  7. Kamarianakis Y. Spatial time series modeling: A review of the proposed methodologies. Regional Economics Applications Lab Technical Series, University of Illinois at Champaign-Urbana, REAL 03-T-19.
  8. Hartwig J., Schnitzspahn K.M., Kliegel M., Velichkovsky B.M., Helmert J.R. I see you remembering: What eye movements can reveal about process characteristics of prospective memory // International Journal of Psychophysiology. 2013. Vol. 88, no. 2. P. 193-199. DOI: 10.1016/j.ijpsycho.2013.03.020
  9. Fortune S. A Sweepline algorithm for Voronoi diagrams // Algorithmica. 1987. Vol. 2, no. 1-4. P. 153-174. DOI: 10.1007/BF01840357
  10. Jain A.K. Data clustering: 50 years beyond K-means // Pattern Recognition Letters. 2010. Vol. 31, no. 8. P. 651-666. DOI: 10.1016/j.patrec.2009.09.011
  11. Lehmann D., Strik W.K., Henggeler B., Koenig T., Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts // International Journal of Psychophysiology. 1998. Vol. 29, no. 1. P. 1-11. DOI: 10.1016/S0167-8760(97)00098-6 .