The 14 references with contexts in paper D. Fetisov A., Д. Фетисов А. (2016) “Достаточное условие управляемости многомерных аффинных систем // Sufficient Controllability Condition for Multidimensional Affine Systems” / spz:neicon:technomag:y:2014:i:1:p:281-293

1
Kovalev A.M.Nelineynye zadachi upravleniya i nablyudeniya v teorii dinamicheskikh system [Nonlinear problems of control and observation in dynamical systems theory]. Kiev, Naukova dumka Publ., 1980. 174 p. (in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=1749
    Prefix
    =A(x, u)Ò ÒÓÒÚÓˇÌËÂÏxË ÛÔ‡‚ÎÂÌËÂÏu̇Á ̊‚‡ ̨Ú ÛÔ‡‚ΡÂÏÓÈ Á‡ ËÌÚÂ‚‡Î ‚ÂÏÂÌË[0, t∗]̇ ÓÚÍ ̊ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ÂOÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓˇÌËÈ, ÂÒÎË ‰Îˇ Î ̨· ̊ı ‰‚Ûı ÒÓÒÚÓˇÌËÈx0∈OËx∗∈ȮȉÂÚÒˇ Ú‡ÍÓ ‰ÓÔÛÒÚËÏÓ ÛÔ‡‚ÎÂÌËÂu=u(t),t∈[0, t∗], ̃ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û ̨ ̆‡ˇ Ú‡ÂÍÚÓˡx(t)Á‡ÏÍÌÛÚÓÈ ÒËÒÚÂÏ ̊ x ̇=A(x, u(t))ÔË ‚ÒÂıt∈[0, t∗]Ì ‚ ̊ıÓ‰ËÚ ËÁ ÏÌÓÊÂÒÚ‚‡OË Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎÓ‚ËˇÏ x(0) =x0,x(t∗) =x∗. ¬ ÏÓÌÓ„‡ÙËË
    Exact
    [1]
    Suffix
    ‰Ó͇Á‡Ì ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ ÚÂÛ„ÓÎ ̧ÌÓ„Ó ‚ˉ‡. ¬ ‡·ÓÚ‡ı [2,3,4] ̇ ÓÒÌÓ‚Â ‰ËÙÙÂÂ̈ˇΠ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂ

2
Krasnoshchechenko V.I., Krishchenko A.P.Nelineinye sistemy: geometricheskie metody analiza i sinteza[Nonlinear systems: geometric methods for analysis and synthesis]. Moscow, Bauman MSTU Publ., 2005. 520 p. (in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=1837
    Prefix
     ̊ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ÂOÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓˇÌËÈ, ÂÒÎË ‰Îˇ Î ̨· ̊ı ‰‚Ûı ÒÓÒÚÓˇÌËÈx0∈OËx∗∈ȮȉÂÚÒˇ Ú‡ÍÓ ‰ÓÔÛÒÚËÏÓ ÛÔ‡‚ÎÂÌËÂu=u(t),t∈[0, t∗], ̃ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û ̨ ̆‡ˇ Ú‡ÂÍÚÓˡx(t)Á‡ÏÍÌÛÚÓÈ ÒËÒÚÂÏ ̊ x ̇=A(x, u(t))ÔË ‚ÒÂıt∈[0, t∗]Ì ‚ ̊ıÓ‰ËÚ ËÁ ÏÌÓÊÂÒÚ‚‡OË Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎÓ‚ËˇÏ x(0) =x0,x(t∗) =x∗. ¬ ÏÓÌÓ„‡ÙËË [1] ‰Ó͇Á‡Ì ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ ÚÂÛ„ÓÎ ̧ÌÓ„Ó ‚ˉ‡. ¬ ‡·ÓÚ‡ı
    Exact
    [2,3,4]
    Suffix
    ̇ ÓÒÌÓ‚Â ‰ËÙÙÂÂ̈ˇΠ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË.

3
Elkin V.I.Reduktsiya nelineynykh upravlyaemykh sistem: differentsial'no-geometricheskiy podkhod[Reduction of nonlinear control systems: differential-geometric approach]. Moscow, Nauka Publ., 1997. 320 p. (in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=1837
    Prefix
     ̊ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ÂOÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓˇÌËÈ, ÂÒÎË ‰Îˇ Î ̨· ̊ı ‰‚Ûı ÒÓÒÚÓˇÌËÈx0∈OËx∗∈ȮȉÂÚÒˇ Ú‡ÍÓ ‰ÓÔÛÒÚËÏÓ ÛÔ‡‚ÎÂÌËÂu=u(t),t∈[0, t∗], ̃ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û ̨ ̆‡ˇ Ú‡ÂÍÚÓˡx(t)Á‡ÏÍÌÛÚÓÈ ÒËÒÚÂÏ ̊ x ̇=A(x, u(t))ÔË ‚ÒÂıt∈[0, t∗]Ì ‚ ̊ıÓ‰ËÚ ËÁ ÏÌÓÊÂÒÚ‚‡OË Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎÓ‚ËˇÏ x(0) =x0,x(t∗) =x∗. ¬ ÏÓÌÓ„‡ÙËË [1] ‰Ó͇Á‡Ì ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ ÚÂÛ„ÓÎ ̧ÌÓ„Ó ‚ˉ‡. ¬ ‡·ÓÚ‡ı
    Exact
    [2,3,4]
    Suffix
    ̇ ÓÒÌÓ‚Â ‰ËÙÙÂÂ̈ˇΠ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË.

4
Zhevnin A.A., Krishchenko A.P. Controllability of nonlinear systems and synthesis of control algorithms.DAN SSSR=Reports of Academy of Sciences of the USSR, 1981, vol. 258, no. 4, pp. 805{809. (in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=1837
    Prefix
     ̊ÚÓÏ ÔÓ‰ÏÌÓÊÂÒÚ‚ÂOÔÓÒÚ‡ÌÒÚ‚‡ ÒÓÒÚÓˇÌËÈ, ÂÒÎË ‰Îˇ Î ̨· ̊ı ‰‚Ûı ÒÓÒÚÓˇÌËÈx0∈OËx∗∈ȮȉÂÚÒˇ Ú‡ÍÓ ‰ÓÔÛÒÚËÏÓ ÛÔ‡‚ÎÂÌËÂu=u(t),t∈[0, t∗], ̃ÚÓ ÒÓÓÚ‚ÂÚÒÚ‚Û ̨ ̆‡ˇ Ú‡ÂÍÚÓˡx(t)Á‡ÏÍÌÛÚÓÈ ÒËÒÚÂÏ ̊ x ̇=A(x, u(t))ÔË ‚ÒÂıt∈[0, t∗]Ì ‚ ̊ıÓ‰ËÚ ËÁ ÏÌÓÊÂÒÚ‚‡OË Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎÓ‚ËˇÏ x(0) =x0,x(t∗) =x∗. ¬ ÏÓÌÓ„‡ÙËË [1] ‰Ó͇Á‡Ì ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ ÚÂÛ„ÓÎ ̧ÌÓ„Ó ‚ˉ‡. ¬ ‡·ÓÚ‡ı
    Exact
    [2,3,4]
    Suffix
    ̇ ÓÒÌÓ‚Â ‰ËÙÙÂÂ̈ˇΠ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË.

5
Sun Y. Necessary and sufficient condition for global controllability of planar affine nonlinear systems.IEEE Transactions on Automatic Control, 2007, vol. 52, no. 8, pp. 1454{1460. DOI: 10.1109/TAC.2007.902750
Total in-text references: 1
  1. In-text reference with the coordinate start=2262
    Prefix
    ‡Î ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË. ÕÂÍÓÚÓ ̊ ÂÁÛÎ ̧Ú‡Ú ̊ ‚ ӷ·ÒÚË ËÒÒΉӂ‡Ìˡ ÛÔ‡‚ΡÂÏÓÒÚË ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ Ô˂‰ÂÌ ̊ Ú‡ÍÊ ‚ ‡·ÓÚ‡ı
    Exact
    [5,6,7,8]
    Suffix
    . ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9].

6
Caines P.E., Lemch E.S. On the global controllability of nonlinear systems: fountains, recurrence, and applications to hamiltonian systems.SIAM J. Contr. Optim., 2003, vol. 41, no. 5, pp. 1532{1553.
Total in-text references: 1
  1. In-text reference with the coordinate start=2262
    Prefix
    ‡Î ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË. ÕÂÍÓÚÓ ̊ ÂÁÛÎ ̧Ú‡Ú ̊ ‚ ӷ·ÒÚË ËÒÒΉӂ‡Ìˡ ÛÔ‡‚ΡÂÏÓÒÚË ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ Ô˂‰ÂÌ ̊ Ú‡ÍÊ ‚ ‡·ÓÚ‡ı
    Exact
    [5,6,7,8]
    Suffix
    . ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9].

7
Sun Y. Further results on global controllability of planar nonlinear systems.IEEE Transactions on Automatic Control, 2010, vol. 55, no. 8, pp. 1872{1875. DOI:10.1109/TAC.2010.2048054
Total in-text references: 1
  1. In-text reference with the coordinate start=2262
    Prefix
    ‡Î ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË. ÕÂÍÓÚÓ ̊ ÂÁÛÎ ̧Ú‡Ú ̊ ‚ ӷ·ÒÚË ËÒÒΉӂ‡Ìˡ ÛÔ‡‚ΡÂÏÓÒÚË ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ Ô˂‰ÂÌ ̊ Ú‡ÍÊ ‚ ‡·ÓÚ‡ı
    Exact
    [5,6,7,8]
    Suffix
    . ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9].

8
Sun Y., Mei S., Lu Q. On global controllability of planar affine nonlinear systems with a singularity.Systems and Control Letters, 2009, vol. 58, no. 2, pp. 124{127. DOI: 10.1016/j.sysconle.2008.09.007
Total in-text references: 1
  1. In-text reference with the coordinate start=2262
    Prefix
    ‡Î ̧ÌÓ-„ÂÓÏÂÚË ̃ÂÒÍÓ„Ó ÔÓ‰ıÓ‰‡ ÔÓÎÛ ̃ÂÌ ̊ ÂÁÛÎ ̧Ú‡Ú ̊, ͇҇ ̨ ̆ËÂÒˇ Ò‚ÓÈÒÚ‚ ÛÔ‡‚ΡÂÏÓÒÚË ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ. ¬ ̃‡ÒÚÌÓÒÚË, ÔÓ͇Á‡ÌÓ, ̃ÚÓ ÂÒÎË ‡ÙÙËÌ̇ˇ ÒËÒÚÂχ ÎË̇ËÁÛÂχ Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ, ÚÓ ̋Ú‡ ÒËÒÚÂχ ÛÔ‡‚ΡÂχ Á‡ Î ̨·ÓÈ ÍÓÌ ̃Ì ̊È ËÌÚÂ‚‡Î ‚ÂÏÂÌË. ÕÂÍÓÚÓ ̊ ÂÁÛÎ ̧Ú‡Ú ̊ ‚ ӷ·ÒÚË ËÒÒΉӂ‡Ìˡ ÛÔ‡‚ΡÂÏÓÒÚË ÌÂÎËÌÂÈÌ ̊ı ÒËÒÚÂÏ Ô˂‰ÂÌ ̊ Ú‡ÍÊ ‚ ‡·ÓÚ‡ı
    Exact
    [5,6,7,8]
    Suffix
    . ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9].

9
Krishchenko A.P., Klinkovskii M.G. Transformation of affine systems with control and stabilization problem.Differentsial'nye uravneniia=Differential Equations, 1992, vol. 28, no. 1, pp. 1945{1952. (in Russian).
Total in-text references: 2
  1. In-text reference with the coordinate start=2631
    Prefix
    ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡
    Exact
    [9]
    Suffix
    . ¬ ‡·ÓÚ‡ı [10,11] ÔÓÎÛ ̃ÂÌ ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ ÒÓ Ò͇ΡÌ ̊Ï ÛÔ‡‚ÎÂÌËÂÏ, ÍÓÚÓ ̊ ÔÂÓ·‡ÁÛ ̨ÚÒˇ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ Í „ÛΡÌÓÏÛ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓÏÛ ‚Ë‰Û Ò Ó‰ÌÓÏÂÌÓÈ ÌÛ΂ÓÈ ‰Ë̇ÏËÍÓÈ.

  2. In-text reference with the coordinate start=3560
    Prefix
    , Gnj(x)) Ú , Fi(x), Gij(x)∈C∞(Rn), i=1, n, j=1, m. —ËÒÚÂÏ (1) ̇ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈRn‚Á‡ËÏÌÓ Ó‰ÌÓÁ̇ ̃ÌÓ ÒÓÓÚ‚ÂÚÒÚ‚Û ̨Ú ‚ÂÍÚÓÌ ̊ ÔÓΡ F= ∑n i=1 Fi(x) ∂ ∂xi ,Gj= ∑n i=1 Gji(x) ∂ ∂xi , j=1, m. —ÎÂ‰Û ̨ ̆‡ˇ ÚÂÓÂχ
    Exact
    [9]
    Suffix
    ÛÒڇ̇‚ÎË‚‡ÂÚ ÌÂÓ·ıÓ‰ËÏ ̊Â Ë ‰ÓÒÚ‡ÚÓ ̃Ì ̊ ÛÒÎӂˡ, ÔË ‚ ̊ÔÓÎÌÂÌËË ÍÓÚÓ ̊ı ÒËÒÚÂχ (1) ÔÂÓ·‡ÁÛÂÚÒˇ Í Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓÏÛ ‚Ë‰Û      z ̇i1=zi2, . . . , ̇ziri−1=ziri, z ̇iri=fi(z, η) +gi1(z, η)u1+. . .+gim(z, η)um, i=1, m; η ̇1=q1(z, η), . . . , ̇ηρ=qρ(z, η), (2) „‰Â r1+. . .+rm=n−ρ, z= (z11, . . . , z1r1, . . . , zm1, . . . , zmrm) Ú , η= (η1, . . . , ηρ) Ú ,(z Ú , η Ú ) Ú = Φ(

10
Fetisov D.A. Study of Controllability of Regular Systems of Quasi-canonical Type.Vestnik MGTU im.N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman MSTU. Ser. Natural science, 2006, no. 3, pp. 12{30. (in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=2646
    Prefix
    ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9]. ¬ ‡·ÓÚ‡ı
    Exact
    [10,11]
    Suffix
    ÔÓÎÛ ̃ÂÌ ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ ÒÓ Ò͇ΡÌ ̊Ï ÛÔ‡‚ÎÂÌËÂÏ, ÍÓÚÓ ̊ ÔÂÓ·‡ÁÛ ̨ÚÒˇ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ Í „ÛΡÌÓÏÛ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓÏÛ ‚Ë‰Û Ò Ó‰ÌÓÏÂÌÓÈ ÌÛ΂ÓÈ ‰Ë̇ÏËÍÓÈ.

11
Emel'yanov S.V., Krishchenko A.P., Fetisov D.A. Controllability research on affine systems. Doklady Akademii Nauk, 2013, vol. 449, no. 1, pp. 15{18. (English translation:Doklady Mathematics, 2013, vol. 87, iss. 2, pp. 245{248. DOI:10.1134/S1064562413020026).
Total in-text references: 1
  1. In-text reference with the coordinate start=2646
    Prefix
    ¬ ̇ÒÚÓˇ ̆ ‚ÂÏˇ ÓÒÌӂ̇ˇ ÔÓ·ÎÂχ, Ò ÍÓÚÓÓÈ ÒÚ‡ÎÍË‚‡ ̨ÚÒˇ ËÒÒΉӂ‡ÚÂÎË, ÒÓÒÚÓËÚ ‚ ÔÓÎÛ ̃ÂÌËË ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, Ì ÎË̇ËÁÛÂÏ ̊ı Ó·‡ÚÌÓÈ Ò‚ˇÁ ̧ ̨. Œ‰ÌÓ ËÁ ̇Ô‡‚ÎÂÌËÈ Ò‚ˇÁ‡ÌÓ Ò ‡Á‡·ÓÚÍÓÈ ÛÒÎÓ‚ËÈ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ, ̋Í‚Ë‚‡ÎÂÌÚÌ ̊ı ÒËÒÚÂÏ‡Ï Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ [9]. ¬ ‡·ÓÚ‡ı
    Exact
    [10,11]
    Suffix
    ÔÓÎÛ ̃ÂÌ ̊ ÛÒÎӂˡ ÛÔ‡‚ΡÂÏÓÒÚË ‰Îˇ ‡ÙÙËÌÌ ̊ı ÒËÒÚÂÏ ÒÓ Ò͇ΡÌ ̊Ï ÛÔ‡‚ÎÂÌËÂÏ, ÍÓÚÓ ̊ ÔÂÓ·‡ÁÛ ̨ÚÒˇ ̇ ‚ÒÂÏ ÔÓÒÚ‡ÌÒÚ‚Â ÒÓÒÚÓˇÌËÈ Í „ÛΡÌÓÏÛ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓÏÛ ‚Ë‰Û Ò Ó‰ÌÓÏÂÌÓÈ ÌÛ΂ÓÈ ‰Ë̇ÏËÍÓÈ.

12
Isidori A.Nonlinear control systems. 3rd ed. London, Springer, 1995. 549 p. DOI: 10.1007/978-1-84628-615-5
Total in-text references: 1
  1. In-text reference with the coordinate start=4790
    Prefix
    ¬ ÔÂÂÏÂÌÌ ̊ız11, . . . ,z1r1, . . . ,zm1, . . . ,zmrm,η1, . . . ,ηρÒËÒÚÂχ (1) ËÏÂÂÚ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍËÈ ‚ˉ (2). œÓ‰ÒËÒÚÂÏÛ η ̇1=q1(z, η), . . . , ̇ηρ=qρ(z, η), ÒËÒÚÂÏ ̊ (2), Ó·‡ÁÓ‚‡ÌÌÛ ̨ ÔÓÒΉÌËÏËρÛ‡‚ÌÂÌˡÏË, ÒÎÂ‰Ûˇ ‡·ÓÚ‡Ï
    Exact
    [12,13]
    Suffix
    , ·Û‰ÂÏ Ì‡Á ̊‚‡Ú ̧ ÒËÒÚÂÏÓÈ ÌÛ΂ÓÈ ‰Ë̇ÏËÍË, ‡ ̃ËÒÎÓρ| ‡ÁÏÂÌÓÒÚ ̧ ̨ ÌÛ΂ÓÈ ‰Ë̇ÏËÍË. ¡Û‰ÂÏ „Ó‚ÓËÚ ̧, ̃ÚÓ ÒËÒÚÂχ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ (2) „ÛΡ̇ ̇ ÏÌÓÊÂÒÚ‚Â X⊆Rn, ÂÒÎË Ï‡Úˈ‡ g(z, η) =      g11(z, η). . . g1m(z, η) . . . . . . . . . . . . . gm1(z, η). . . gmm(z, η)      Ì‚ ̊ÓʉÂ̇ ̇ ̋ÚÓÏ ÏÌÓÊÂÒÚ‚Â. ƒ‡Î ·Û‰ÂÏ Ô‰ÔÓ·„‡Ú ̧, ̃ÚÓ ÒËÒÚÂχ (1) Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎӂˡÏ

13
Krsti-c M., Kanellakopoulos I., Kokotovi-c P.V.Nonlinear and adaptive control design. New York, John Wiley and Sons, 1995. 563 p.
Total in-text references: 1
  1. In-text reference with the coordinate start=4790
    Prefix
    ¬ ÔÂÂÏÂÌÌ ̊ız11, . . . ,z1r1, . . . ,zm1, . . . ,zmrm,η1, . . . ,ηρÒËÒÚÂχ (1) ËÏÂÂÚ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍËÈ ‚ˉ (2). œÓ‰ÒËÒÚÂÏÛ η ̇1=q1(z, η), . . . , ̇ηρ=qρ(z, η), ÒËÒÚÂÏ ̊ (2), Ó·‡ÁÓ‚‡ÌÌÛ ̨ ÔÓÒΉÌËÏËρÛ‡‚ÌÂÌˡÏË, ÒÎÂ‰Ûˇ ‡·ÓÚ‡Ï
    Exact
    [12,13]
    Suffix
    , ·Û‰ÂÏ Ì‡Á ̊‚‡Ú ̧ ÒËÒÚÂÏÓÈ ÌÛ΂ÓÈ ‰Ë̇ÏËÍË, ‡ ̃ËÒÎÓρ| ‡ÁÏÂÌÓÒÚ ̧ ̨ ÌÛ΂ÓÈ ‰Ë̇ÏËÍË. ¡Û‰ÂÏ „Ó‚ÓËÚ ̧, ̃ÚÓ ÒËÒÚÂχ Í‚‡ÁË͇ÌÓÌË ̃ÂÒÍÓ„Ó ‚ˉ‡ (2) „ÛΡ̇ ̇ ÏÌÓÊÂÒÚ‚Â X⊆Rn, ÂÒÎË Ï‡Úˈ‡ g(z, η) =      g11(z, η). . . g1m(z, η) . . . . . . . . . . . . . gm1(z, η). . . gmm(z, η)      Ì‚ ̊ÓʉÂ̇ ̇ ̋ÚÓÏ ÏÌÓÊÂÒÚ‚Â. ƒ‡Î ·Û‰ÂÏ Ô‰ÔÓ·„‡Ú ̧, ̃ÚÓ ÒËÒÚÂχ (1) Û‰Ó‚ÎÂÚ‚ÓˇÂÚ ÛÒÎӂˡÏ

14
Fetisov D.A. A method for solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 383{400. DOI:10.7463/1113.0622543(in Russian).
Total in-text references: 1
  1. In-text reference with the coordinate start=6507
    Prefix
    z1r10, . . . , zm10, . . . , zmrm0, η10, . . . , ηρ0) Ú (3) ‚ ÍÓÌ ̃ÌÓ ÒÓÒÚÓˇÌË Φ(x∗) = (z11∗, . . . , z1r1∗, . . . , zm1∗, . . . , zmrm∗, η1∗, . . . , ηρ∗) Ú .(4) ›Í‚Ë‚‡ÎÂÌÚÌÓÒÚ ̧ ÚÂÏË̇Π̧Ì ̊ı Á‡‰‡ ̃ ÔÓÌËχÂÚÒˇ ‚ ÚÓÏ ÒÏ ̊ÒÎÂ, ̃ÚÓ ÛÔ‡‚ÎÂÌˡu1= u1(t), . . . ,um=um(t),t∈[0, t∗], ˇ‚Ρ ̨ ̆ËÂÒˇ  ̄ÂÌËÂÏ Ó‰ÌÓÈ ËÁ Á‡‰‡ ̃, ˇ‚Ρ ̨ÚÒˇ Ó‰ÌÓ‚ÂÏÂÌÌÓ  ̄ÂÌËÂÏ Ë ‰Û„ÓÈ Á‡‰‡ ̃Ë. —ÎÂ‰Û ̨ ̆‡ˇ ÚÂÓÂχ
    Exact
    [14]
    Suffix
    ÛÒڇ̇‚ÎË‚‡ÂÚ ÌÂÓ·ıÓ‰ËÏ ̊Â Ë ‰ÓÒÚ‡ÚÓ ̃Ì ̊ ÛÒÎӂˡ ÒÛ ̆ÂÒÚ‚Ó‚‡Ìˡ  ̄ÂÌˡ ÚÂÏË̇Π̧ÌÓÈ Á‡‰‡ ̃Ë (3), (4) ‰Îˇ ÒËÒÚÂÏ ̊ (2). “ÂÓÂχ 2.ƒÎˇ ÚÓ„Ó ̃ÚÓ· ̊ ÒÛ ̆ÂÒÚ‚Ó‚‡ÎË ÌÂÔÂ ̊‚Ì ̊ ÛÔ‡‚ÎÂÌˡu1=u1(t), . . . , um=um(t),t∈[0, t∗], ˇ‚Ρ ̨ ̆ËÂÒˇ  ̄ÂÌËÂÏ ÚÂÏË̇Π̧ÌÓÈ Á‡‰‡ ̃Ë (3), (4) ‰Îˇ ÒËÒÚÂÏ ̊ (2), ÌÂÓ·ıÓ‰ËÏÓ Ë ‰ÓÒÚ‡ÚÓ ̃ÌÓ, ̃ÚÓ· ̊ ÒÛ ̆ÂÒÚ‚Ó‚‡ÎË ÙÛÌ͈ËËBi(t)∈Cri([0, t∗]),i=1, m, Û‰Ó‚ÎÂÚ‚Óˇ ̨ ̆ËÂ