The 15 references in paper A. Krishchenko P., M. Velishchanskiy A., А. Крищенко П., М. Велищанский А. (2016) “Задача терминального управления для системы второго порядка при наличии ограничений // A Terminal Control Problem for the Second Order System with Restrictions” / spz:neicon:technomag:y:2015:i:8:p:301-318

1
Levine J., Martin Ph., Rouchon P. Flat systems. Mini-Course. In:ECC'97 European Control Conference, Brussels, 1{4 July, 1997.
(check this in PDF content)
2
Krishchenko A.P., Fetisov D.A. Transformation of Affine Systems and Solving of Terminal Control Problems.Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman Moscow State Technical University. Ser. Natural science, 2013, no. 2, pp. 3{16. (in Russian).
(check this in PDF content)
3
Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems.Differentsial'nye uravneniya, 2013, vol. 49, no. 11, pp. 1410{1420. (English version of journal:Differential Equations, 2013, vol. 49, iss. 11, pp. 1378{1388. DOI:10.1134/S0012266113110062).
(check this in PDF content)
4
Krishchenko A.P., Fetisov D.A. Terminal problem for multidimensional affine systems.Doklady Akademii Nauk, 2013, vol. 452, no. 2, pp. 144{149. (English version of journal:Doklady Mathematics, 2013, vol. 88, no. 2, pp. 608{612. DOI:10.1134/S1064562413020026).
(check this in PDF content)
5
Fetisov D.A. Solution of terminal problems for affine systems in quasicanonical form on the basis of orbital linearization.Differentsial'nye uravneniya, 2014, vol. 50, no. 12. pp. 1660{ 1668. (English version of journal:Differential Equations, 2014, vol. 50, iss. 12, pp. 1664{1672. DOI:10.1134/S0012266114120106).
(check this in PDF content)
6
Krut'ko P.D.Obratnye zadachi dinamiki upravljaemyh sistem: nelinejnye modeli[Inverse Problems of Dynamics of Controlled Systems. Nonlinear Models]. Moscow, Nauka Publ., 1987. (in Russian).
(check this in PDF content)
7
Velishchanskii M.A., Krishchenko A.P., Tkachev S.B. Quasioptimal reorientation of a spacecraft.Mehanika tverdogo tela=Rigid body mechanics, 2002, iss. 32. pp. 144{153. (in Russian)
(check this in PDF content)
8
Velishchanskii M.A., Krishchenko A.P., Tkachev S.B. Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem.Izvestija Rossijskoj akademii nauk. Teorija i sistemy upravlenija, 2003, no. 5, pp. 156{163. (English version of journal: Journal of Computer and Systems Sciences International, 2003, no. 5, pp. 811{818).
(check this in PDF content)
9
Kanatnikov A.N., Krishchenko A.P., Tkachev S.B. Admissible Spatial Trajectories of the Unmanned Aeral Vechicle in the Vertical PlaneNauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2012, no. 3. Available at: http://technomag.bmstu.ru/doc/367724.html, accessed: 06.06.2015. (in Russian).
(check this in PDF content)
10
Kanatnikov A.N., Krishchenko A.P., Tkachev S.B. Planning of the Spatial Turn of the Unmanned Aeral Vechicle.Vestnik MGTU im. N.E. Baumana. Spetsial'nyj vypusk. Energeticheskoe i transportnoe mashinostroenie=Herald of the Bauman Moscow State Technical University. Special Issue. Power and Transport Engineering, 2011, pp. 151-163. (in Russian).
(check this in PDF content)
11
Kasatkina T.S., Krishchenko A.P. Variations Method to Solve Terminal Problems for the Second Order Systems of Canonical Form with State Constraints.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2015, no. 5, pp. 266{280. DOI:10.7463/0515.076623(in Russian).
(check this in PDF content)
12
Krishchenko A.P. Parametric Sets of Integral Equations Solutions.Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman Moscow State Technical University. Ser. Natural science, 2014, no. 3, pp. 3{10. (in Russian)
(check this in PDF content)
13
Byrd R.H., Gilbert J.C., Nocedal J. A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming.Mathematical Programming, 2000, vol. 89, no. 1, pp. 149{185. DOI:10.1007/PL00011391
(check this in PDF content)
14
Byrd R.H., Hribar M.E., Nocedal J. An Interior Point Algorithm for Large-Scale Nonlinear Programming,SIAM Journal on Optimization, 1999, vol. 9, no. 4, pp. 877{900. 10.1137/S1052623497325107
(check this in PDF content)
15
Waltz R.A., Morales J.L., Nocedal J., Orban D. An interior algorithm for nonlinear optimization that combines line search and trust region steps.Mathematical Programming. 2006, vol. 107, no. 3, pp. 391{408. DOI:10.1007/s10107-004-0560-5
(check this in PDF content)