The 34 references in paper A. Shirshov A., I. Kiselev A., S. Voronov A., V. Ma, А. Ширшов А., В. Ма ., И. Киселёв А., С. Воронов А. (2016) “Имитационная динамическая модель процесса шлифования сложнопрофильных деталей. Развитие методов моделирования // Numerical Simulation of a Grinding Process Model for the Spatial Work-pieces: Development of Modeling Techniques” / spz:neicon:technomag:y:2015:i:5:p:40-58

1
Tonshoff H.K., Friemuth T., Becker J.C. Process monitoring in grinding // CIRP Annals - Manufacturing Technology. 2002. Vol. 51, no. 2. P. 551-571. DOI: 10.1016/S00078506(07)61700-4
(check this in PDF content)
2
Subramanian K., Lindsay R.P. A Systems Approach for the Use of Vitrified Bonded Superabrasive Wheels for Precision Production Grinding // Trans. ASME. Journal of Manufacturing Science and Engineering. 1992. Vol. 114, no. 1. P. 41-52. DOI: 10.1115/1.2899757
(check this in PDF content)
3
Malkin S., Guo C. Grinding Technology: Theory and Applications of Machining with Abrasives. New York, Industrial Press Publ., 2008.
(check this in PDF content)
4
Salisbury E.J., Domala K.V., Moon K.S., Miller M.H., Sutherland J.W. A three-dimensional model for the surface texture in surface grinding, Part 1: Surface generation model // Journal of Manufacturing Science and Engineering. 2001. Vol. 123. P. 576-581. DOI: 10.1115/1.1391427
(check this in PDF content)
5
Anderson R.O. Detecting and eliminating collisions in NC machining // Computer-Aided Design. 1978. Vol. 10, no. 2. P. 231-237. DOI: 10.1016/0010-4485(78)90058-1
(check this in PDF content)
6
Hook T.V. Real-time shaded NC milling display // ACM SIGGRAPH Computer Graphics. 1986. Vol. 20, no. 4. P. 15-20. DOI: 10.1145/15922.15887
(check this in PDF content)
7
Hsu P.-L., Yang W.-T. Realtime 3D simulation of 3-axis milling using isometric projection // Computer-Aided Design. 1993. Vol. 25, no. 4. P. 215-224. DOI: 10.1016/00104485(93)90052-P
(check this in PDF content)
8
Jerard R.B., Fussell B.K., Ercan M.T. On-line optimization of cutting conditions for NC machining // Proc. of the NSF Design, Manufacturing, and Industrial Innovation Research Conference, Tampa, Florida, USA, Jan. 7-10, 2001. P. 7-10.
(check this in PDF content)
9
Takata S., Tsai M.D., Inui M., Sata T. A cutting simulation system for machinability evaluation using a workpiece model // CIRP Annals - Manufacturing Technology. 1989. Vol. 38, no. 1. P. 417-420. DOI: 10.1016/S0007-8506(07)62736-X
(check this in PDF content)
10
Kim G.M., Cho P.J., Chu C.N. Cutting force prediction of sculptured surface ball-end milling using Z-map // International Journal of Machine Tools and Manufacture. 2000. Vol. 40, no. 2. P. 277-291. DOI: 10.1016/S0890-6955(99)00040-1
(check this in PDF content)
11
Lazoglu I. Sculpture surface machining: a generalized model of ball-end milling force system // International Journal of Machine Tools and Manufacture. 2003. Vol. 43, no. 5. P. 453462. DOI: 10.1016/S0890-6955(02)00302-4
(check this in PDF content)
12
Salisbury E.J., Domala K.V., Moon K.S., Miller M.H., Sutherland J.W. A three-dimensional model for the surface texture in surface grinding, Part 2: Grinding wheel surface texture model // Trans. ASME. Journal of Manufacturing Science and Engineering. 2001. Vol.123. P. 582-590. DOI: 10.1115/1.1391428
(check this in PDF content)
13
Zitt U.R. Modellierung und Simulation von Hochleistungsschleifprozessen. Dissertation. University of Kaiserslautern, 1999.
(check this in PDF content)
14
Torrance A.A. Modelling abrasive wear // Wear. 2005. Vol. 258, no. 1. P. 281-293. DOI: 10.1016/j.wear.2004.09.065
(check this in PDF content)
15
Xuekun Li, Yiming Rong. Framework of grinding process modeling and simulation based on microscopic interaction analysis // Robotics and Computer-Integrated Manufacturing. 2011. Vol. 27, no. 2. P. 471-478. DOI: 10.1016/j.rcim.2010.06.029
(check this in PDF content)
16
Chen X., Rowe W.B. Analysis and simulation of the grinding process. Part II: Mechanics of grinding // International Journal of Machine Tools and Manufacture. 1996. Vol. 36, no. 8. P. 883-896. DOI: 10.1016/0890-6955(96)00117-4
(check this in PDF content)
17
Sakakura M., Tsukamoto S., Fujiwara T., Inasaki I. Visual simulation of grinding process // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008. Vol. 222, no. 10. P. 1233-1239. DOI: 10.1243/09544054JEM1032
(check this in PDF content)
18
Chen X., Rowe W.B. Analysis and simulation of the grinding process. Part I: Generation of the grinding wheel surface // International Journal of Machine Tools and Manufacture. 1996. Vol. 36, no. 8. P. 871-882. DOI: 10.1016/0890-6955(96)00116-2
(check this in PDF content)
19
Werner K., Klocke F., Brinksmeier E. Modelling and simulation of grinding processes // Proc. of the 1 st European Conf. on Grinding, Aachen, 6-7 November 2003. P. 8-1–8-27.
(check this in PDF content)
20
Li K., Liao W. Modelling of ceramic grinding processes Part I. Number of cutting points and grinding forces per grit // Journal of Materials Processing Technology. 1997. Vol. 65, no. 1. P. 1-10. DOI: 10.1016/0924-0136(95)02232-5
(check this in PDF content)
21
Hou Z.B., Komanduri R. On the mechanics of the grinding process - Part I. Stochastic nature of the grinding process // International Journal of Machine Tools and Manufacture. 2003. Vol. 43, no. 15. P. 1579-1593. DOI: 10.1016/S0890-6955(03)00186-X
(check this in PDF content)
22
Weinert K., Blum H., Jansen T., Rademacher A. Simulation based optimization of the NCshape grinding process with toroid grinding wheels // Production Engineering. 2007. Vol. 1, no. 3. P. 245–252. DOI: 10.1007/s11740-007-0042-8
(check this in PDF content)
23
Tahsin Tecelli, Xun Chen. An Investigation of the Rubbing and Ploughing in Single Grain Grinding using Finite Element Method // Proc. of the 8th Int. Conf. on Manufacturing Research, Durham, UK, 14-16 Sept. 2010. Available at: http://eprints.hud.ac.uk/8597/ , accessed 01.04.2015.
(check this in PDF content)
24
Doman D.A., Warkentin A., Bauer R. Finite element modeling approaches in grinding // International Journal of Machine Tools and Manufacture. 2009. Vol. 49, no. 2. P. 109-116. DOI: 10.1016/j.ijmachtools.2008.10.002
(check this in PDF content)
25
Lin B., Yu S.Y., Wang S.X. An experimental study on molecular dynamics simulation in nanometer grinding // Journal of Materials Processing Technology. 2003. Vol. 138, no. 1. P. 484-488. DOI: 10.1016/S0924-0136(03)00124-9
(check this in PDF content)
26
Li J., Fang Q., Liu Y., Zhang L. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding // Applied Surface Science. 2014. Vol. 303. P. 331-343.
(check this in PDF content)
27
Popp K.M., Kroger M., Deichmueller M., Denkena B. Analysis of the machine structure and dynamic response of a tool grinding machine // Proc. of the 1 st Int. Conf. on Process Machine Interaction. 2008. P. 299–307.
(check this in PDF content)
28
Merrit H.E. Theory of Self-Excited Machine Tool Chatter: Contribution to Machine-Tool Chatter Research // Trans. ASME. Journal of Manufacturing Science and Engineering. 1965. Vol. 87, no. 4. P. 447-454. DOI: 10.1115/1.3670861
(check this in PDF content)
29
Tlusty J., Polacek M. The stability of the machine tools against self-excited vibration in machining // Proceedings of the International Research in Production Engineering ASME Conference. Pittsburgh, 1963. P. 465-474.
(check this in PDF content)
30
Tobias S., Fishwick W. Theory of regenerative machine tool chatter // The Engineer. London (UK), 1958. Vol. 205. P. 199-203.
(check this in PDF content)
31
Воронов С.А., Киселев И.А. Геометрический алгоритм 3mzbl для моделирования процессов обработки резанием. Алгоритм изменения поверхности и определения толщины срезаемого слоя // Инженерный журнал: наука и инновации. 2012. No 6. Режим доступа: http://engjournal.ru/catalog/eng/teormech/261.html (дата обращения 01.04.2015).
(check this in PDF content)
32
Воронов С.А., Киселев И.А., Аршинов С.В. Методика применения численного моделирования динамики многокоординатного фрезерования сложнопрофильных деталей при проектировании технологического процесса // Инженерный журнал: наука и инновации. 2012. No 6. Режим доступа: http://engjournal.ru/catalog/eng/teormech/260.html (дата обращения 01.04.2015).
(check this in PDF content)
33
Киселев И.А. Геометрический алгоритм 3MZBL для моделирования процессов обработки резанием. Методика описания поверхности заготовки // Инженерный журнал: наука и инновации. 2012. No 6. Режим доступа: http://engjournal.ru/catalog/eng/teormech/269.html (дата обращения 01.04.2015).
(check this in PDF content)
34
Kiselev I., Voronov S. Methodic of Rational Cutting Conditions Determination for 3-D Shaped Detail Milling Based on the Process Numerical Simulation // Proc. ASME. 46391; Vol. 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. 2014. Art. no. V006T10A075. DOI: 10.1115/DETC2014-34894
(check this in PDF content)