The 16 references in paper A. Krishchenko P., T. Kasatkina S., А. Крищенко П., Т. Касаткина С. (2016) “Метод вариаций решения терминальных задач для двумерных систем канонического вида при наличии ограничений // Variations Method to Solve Terminal Problems for the Second Order Systems of Canonical Form with State Constraints” / spz:neicon:technomag:y:2015:i:5:p:266-280

1
Levine J., Martin P., Rouchon P. Flat systems. Mini-Course.ECC'97 European Control Conference, Brussels, 1-4 July, 1997. 54 p.
(check this in PDF content)
2
Fetisov D.A. Solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 10, pp. 123{137. DOI:10.7463/1013.0604151(in Russian).
(check this in PDF content)
3
Fetisov D.A. A method for solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 383{401. DOI:10.7463/1113.0622543(in Russian).
(check this in PDF content)
4
Fetisov D.A. Solving of Terminal Problems for Multidimensional Affine Systems Based on Transformation to a Quasicanonical Form.Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman Moscow State Technical University. Ser. Natural sciences, 2014, no. 5, pp. 16-31. (in Russian).
(check this in PDF content)
5
Fetisov D.A. Sufficient Controllability Condition for Multidimensional Affine Systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 11, pp. 281{294. DOI:10.7463/1114.0737321(in Russian).
(check this in PDF content)
6
Fetisov D.A. Solution of terminal problems for affine systems in quasicanonical form on the basis of orbital linearization.Differentsial'nye uravneniya, 2014, vol. 50, no. 12, pp. 1660{ 1668. (English version of journal:Differential Equations, 2014, vol. 50, iss. 12, pp. 1664-1672. DOI:10.1134/S0012266114120106).
(check this in PDF content)
7
Golubev A.E., Krishchenko A.P. Polynomials-Based Terminal Control of Affine Systems. Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2015, no. 2, pp. 101{115. DOI:10.7463/0215.0758826(in Russian).
(check this in PDF content)
8
Belinskaya Yu.S., Chetverikov V.N., Tkachev S.B. Automatic synthesis of the helicopter programmed motion along the horizontal line.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 10, pp. 285{299. DOI: 10.7463/1013.0660675(in Russian).
(check this in PDF content)
9
Chetverikov V.N. The covering method for the solution of terminal control problem.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 2, pp. 125{143. DOI:10.7463/0214.0699730(in Russian).
(check this in PDF content)
10
Krasnoshchechenko V.I. Simple algorithm of terminal control of pneumodrive at state and control constraints.Inzhenernyy zhurnal: nauka i innovatsii=Engineering Journal: Science and Innovation, 2014, no. 7. Available at:http://engjournal.ru/catalog/it/asu/1253.html, accessed 01.04.2015. (in Russian).
(check this in PDF content)
11
Kasatkina T.S., Krishchenko A.P. Terminal control of processes in chemical reactors using orbital linearization.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 10, pp. 355{372. DOI:10.7463/1013.0612563(in Russian).
(check this in PDF content)
12
Kasatkina T.S., Krishchenko A.P. Solving the Terminal Problem for the Third Order Systems Using the Orbital Linearization.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2014, no. 12, pp. 781{797. DOI:10.7463/1214.0742829(in Russian).
(check this in PDF content)
13
Krishchenko A.P. Parametric Sets of Integral Equations Solutions.Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman Moscow State Technical University. Ser. Natural sciences, 2014, no. 3, pp. 3{10. (in Russian).
(check this in PDF content)
14
Chernous'ko F.L. A local variation method for the numerical solution of variational problems. Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 1965, vol. 5, no. 4, pp. 749{754. (English version of journal:USSR Computational Mathematics and Mathematical Physics, 1965, vol. 5, no. 4, pp. 234{242).
(check this in PDF content)
15
Krylov I.A., Chernous'ko F.L. Solution of the problems of optimal control by the method of local variations.Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 1966, vol. 6, no. 2, pp. 203{217. (English version of journal:USSR Computational Mathematics and Mathematical Physics, 1966, vol. 6, no. 2, pp. 12{31).
(check this in PDF content)
16
Moiseev N.N. Metody dinamicheskogo programmirovaniya v teorii optimal'nykh upravlenii. 1.Zhurnal vychislitel'noi matematiki i matematicheskoi fiziki, 1964, vol. 4, no. 3, pp. 485{494. (English version of journal:USSR Computational Mathematics and Mathematical Physics, 1964, vol. 4, iss. 3, pp. 121{135).
(check this in PDF content)