The 55 references in paper A. Karpenko P., M. Sakharov K., А. Карпенко П., М. Сахаров К. (2016) “Меметические алгоритмы для решения задачи глобальной нелинейной оптимизации. Обзор // Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review” / spz:neicon:technomag:y:2015:i:2:p:119-142

1
Карпенко А.П. Современные алгоритмы поисковой оптимизации. Алгоритмы, вдохновленные природой. М.: Изд-во МГТУ им. Н.Э. Баумана, 2014. 446 с.
(check this in PDF content)
2
Карпенко А.П., Сахаров М.К. Мультимемеевая глобальная оптимизация на основе алгоритма эволюции разума // Информационные технологии. 2014. No 7. С. 23-30.
(check this in PDF content)
3
Goldberg D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989. P. 372.
(check this in PDF content)
4
Dawkins R. The Selfish Gene. Oxford University Press, 1976. P. 224.
(check this in PDF content)
5
Sakharov M.K., Karpenko A.P., Velisevich Ya.I. Multi-Memetic Mind Evolutionary Computation Algorithm for Loosely Coupled Systems of Desktop Computers // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2015. No 10. С. 438-452. DOI: 10.7463/1015.0814435
(check this in PDF content)
6
Krasnogor N., Blackburne B., Hirst J.D., Burke E.K. Multimeme Algorithms for the Structure Prediction and Structure Comparison of Proteins // In book: Parallel Problem Solving from Nature – PPSN VII / ed. by J.J.M. Guervos et al. Springer Berlin Heidelberg, 2002. P.
(check this in PDF content)
7
9-778. DOI: 10.1007/3-540-45712-7_74 (Ser. Lecture Notes in Computer Science; vol. 2439.). 7. Ong Y.S., Keane A.J. Meta-Lamarckian learning in memetic algorithms // IEEE Transactions on Evolutionary Computation. 2004. Vol. 8, no. 2. P. 99-110. DOI: 10.1109/TEVC.2003.819944
(check this in PDF content)
8
Ong Y.S. Artificial Intelligence Technologies in Complex Engineering Design: Ph.D. Thesis. School of Engineering Science, University of Southampton, United Kingdom, 2002.
(check this in PDF content)
9
Krasnogor N. Studies on the Theory and Design Space of Memetic Algorithms: Ph.D. Thesis. Faculty of Computing, Mathematics and Engineering, University of the West of England, Bristol, U.K., 2002.
(check this in PDF content)
10
Davis L., ed. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991. 385 p.
(check this in PDF content)
11
Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Caltech Concurrent Computation Program 158-79, California Institute of Technology, Pasadena, California, USA. 1989. 67 p.
(check this in PDF content)
12
Zhu N., Ong Y.S., Wong K.W., Seow K.T. Using memetic algorithms for fuzzy modeling // Australian Journal of Intelligent Information Processing Systems. 2004. Vol. 8, no. 3. P. 147-154.
(check this in PDF content)
13
Burke E.K., Kendall G., Soubeiga E. A Tabu-Search Hyperheuristic for Timetabling and Rostering // Journal of Heuristics. 2003. Vol. 9, no. 6. P. 451-470. DOI: 10.1023/B:HEUR.0000012446.94732.b6
(check this in PDF content)
14
Bin Li, Zheng Zhou, Weixia Zou, Dejian Li. Quantum Memetic Evolutionary AlgorithmBased Low-Complexity Signal Detection for Underwater Acoustic Sensor Networks // IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2012. Vol. 42, no. 5. P. 626-640. DOI: 10.1109/TSMCC.2011.2176486
(check this in PDF content)
15
Maolin Tang, Xin Yao. A Memetic Algorithm for VLSI Floorplanning // IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2007. Vol. 37, no. 1. P. 62-69. DOI: 10.1109/TSMCB.2006.883268
(check this in PDF content)
16
Molina D., Lozano M., Herrera F. Memetic algorithm with local search chaining for continuous optimization problems: A scalability test. In ISDA // Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and Applications (ISDA’09). IEEE Publ., 2009. P. 1068-1073. DOI: 10.1109/ISDA.2009.143
(check this in PDF content)
17
Ang J.H., Tan K.S., Mamun A.A. An evolutionary memetic algorithm for rule extraction // Expert Systems with Applications. 2010. Vol. 37, is. 2. P. 1302-1315. DOI: 10.1016/j.eswa.2009.06.028
(check this in PDF content)
18
Bhowmik P., Rakshit P., Konar A., Nagar A.K., Kim E. DETDQL: an adaptive memetic algorithm // 2012 IEEE Congress on Evolutionary Computation (CEC). IEEE Publ., 2012. P. 1-8. DOI: 10.1109/CEC.2012.6256573
(check this in PDF content)
19
Qin K., Suganthan P.N. Self-adaptive differential evolution algorithm for numerical optimization // Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Vol. 2. IEEE Publ., 2005. P. 1785-1791. DOI: 10.1109/CEC.2005.1554904
(check this in PDF content)
20
Knowles J., Corne D., Wu A. A comparison of diverse approaches to memetic multiobjective combinatorial optimization // Proceedings of the 2000 Genetic and Evolutionary Computation Conference. 1st Workshop Memetic Algorithms. San Francisco: Morgan Kaufmann Publishers, 2000. P.103-108.
(check this in PDF content)
21
Moscato P. Memetic algorithms for molecular conformation and other optimization problems // International Union of Crystallography, Newsletter of the Commission for Powder Diffraction. 1998. No. 20. P. 32-33.
(check this in PDF content)
22
Neri F., Cotta C., Moscato P. Handbook of Memetic Algorithms. Springer Berlin Heidelberg, 2011. 368 p. DOI: 10.1007/978-3-642-23247-3 (Ser. Studies in Computational Intelligence; vol. 379).
(check this in PDF content)
23
Moscato P., Corne D., Glover F., Dorigo M. Memetic algorithms: A short introduction // In book: New Ideas in Optimization. McGraw-Hill, 1999. P. 219-234.
(check this in PDF content)
24
Neri F., Cotta C. Memetic algorithms and memetic computing optimization: A literature review // Swarm and Evolutionary Computation. 2012. Vol. 2. P. 1-14. DOI: 10.1016/j.swevo.2011.11.003
(check this in PDF content)
25
Liang K., Yao X., Newton C. Lamarckian evolution in global optimization // Proc. of the
(check this in PDF content)
26
h Annual Conference of the IEEE Industrial Electronics Society (IECON 2000). Vol. 4. IEEE Publ., 2000. P. 2975-2980. DOI: 10.1109/IECON.2000.972471 26. Houck C., Joines J. Kay M. Utilizing Lamarckian Evolution and the Baldwin Effect in Hybrid Genetic Algorithms. NCSU-IE Technical Report 96-01. Meta-Heuristic Research and Applications Group, Department of Industrial Engineering, North Carolina State University, 1996. P. 96-101.
(check this in PDF content)
27
Wolpert D., Macready W. No free lunch theorems for optimization // IEEE Transactions on Evolutionary Computation. 1997. Vol. 1, no. 1. P. 67-82. DOI: 10.1109/4235.585893
(check this in PDF content)
28
Krasnogor N., Smith J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues // IEEE Transactions on Evolutionary Computation. 2005. Vol. 9, is. 5. P. 474488. DOI: 10.1109/TEVC.2005.850260
(check this in PDF content)
29
Yi Mei, Ke Tang, Xin Yao. Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem // IEEE Transactions on Evolutionary Computation. 2011. Vol. 15, is. 2. P. 151-165. DOI: 10.1109/TEVC.2010.2051446
(check this in PDF content)
30
Miller J.A., Potter W.D., Gandham R.V., Lapena C.N. An evaluation of local improvement operators for genetic algorithms // IEEE Transactions on Systems, Man and Cybernetics. 1993. Vol. 23, is. 5. P. 1340-1351. DOI: 10.1109/21.260665
(check this in PDF content)
31
Ishibuchi H., Yoshida T., Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling // IEEE Transactions on Evolutionary Computation. 2003. Vol. 7, is. 2. P. 204-223. DOI: 10.1109/TEVC.2003.810752
(check this in PDF content)
32
Bambha N.K., Bhattacharyya S.S., Teich J., Zitzler E. Systematic integration of parameterized local search into evolutionary algorithms // IEEE Transactions on Evolutionary Computation. 2004. Vol. 8, is. 2. P. 137-154. DOI: 10.1109/TEVC.2004.823471
(check this in PDF content)
33
Tang J., Lim M.H., Ong Y.S. Diversity-Adaptive Parallel Memetic Algorithm for Solving Large Scale Combinatorial Optimization Problems // Soft Computing: A Fusion of Foundations, Methodologies and Applications. 2007. Vol. 11, is. 9. P. 873-888. DOI: 10.1007/s00500-006-0139-6
(check this in PDF content)
34
Merz P., Freisleben B. et al. Fitness landscapes and memetic algorithm design // In book: New Ideas in Optimization / ed. by D. Corne et al. New York: McGraw-Hill, 1999. P. 245260.
(check this in PDF content)
35
Ong Y.S., Keane A.J. A domain knowledge based search advisor for design problem solving environments // Engineering Applications of Artificial Intelligence. 2002. Vol. 15, no. 1. P. 105-116. DOI: 10.1016/S0952-1976(02)00016-7
(check this in PDF content)
36
Ong Y.S., Lim M.H., Zhu N., Wong K.W. Classification of adaptive memetic algorithms: A comparative study // IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2006. Vol. 36, is. 1. P. 141-152. DOI: 10.1109/TSMCB.2005.856143
(check this in PDF content)
37
Hart W., Krasnogor N., Smith J. Recent Advances in Memetic Algorithms. Springer Berlin Heidelberg, 2004. 410 p. DOI: 10.1007/3-540-32363-5
(check this in PDF content)
38
Smith J., Hart W., Krasnogor N. Editorial Introduction Special Issue on Memetic Algorithms // Evolutionary Computation. 2004. Vol. 12, no. 3. P. 273-353. DOI: 10.1162/1063656041775009
(check this in PDF content)
39
Hart W.E. Adaptive Global Optimization with Local Search: PhD Thesis. University of California, San Diego, 1994. 135 p.
(check this in PDF content)
40
Hinterding R., Michalewicz Z., Eiben A.E. Adaptation in Evolutionary Computation: A Survey // IEEE International Conference on Evolutionary Computation. IEEE Press, 1997. P. 65-69. DOI: 10.1109/ICEC.1997.592270
(check this in PDF content)
41
Gutin G., Karapetyan D. A selection of useful theoretical tools for the design and analysis of optimization heuristics // Memetic Computing. 2009. Vol. 1, no. 1. P. 25-34. DOI: 10.1007/s12293-008-0001-8
(check this in PDF content)
42
Kendall G., Cowling P., Soubeiga E. Choice function and random hyperheuristics // Proc. of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Singapore, Nov. 2002. P. 667-671.
(check this in PDF content)
43
Smith J. Co-evolving Memetic Algorithms: Initial Investigations // In book: Parallel Problem Solving from Nature – PPSN VII / ed. by J.J.M. Guervos et al. Springer Berlin Heidelberg, 2002. P. 537-546. DOI: 10.1007/3-540-45712-7_52 (Ser. Lecture Notes in Computer Science; vol. 2439.).
(check this in PDF content)
44
Qin K., Suganthan P.N. Self-adaptive differential evolution algorithm for numerical optimization // Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Vol. 2. IEEE Publ., 2005. P. 1785-1791. DOI: 10.1109/CEC.2005.1554904
(check this in PDF content)
45
Smith J.E. Coevolving Memetic Algorithms: A Review and Progress Report // IEEE Transactions on Systems, Man, and Cybernetics, Part B. 2007. Vol. 37, is. 1. P. 6-17. DOI: 10.1109/TSMCB.2006.883273
(check this in PDF content)
46
Smith J.E. Estimating meme fitness in adaptive memetic algorithms for combinatorial problems // Evolutionary Computation. 2012. Vol. 20, is. 2. P. 165-188. DOI: 10.1162/EVCO_a_00060
(check this in PDF content)
47
Krasnogor N., Gustafson S. A study on the use of self-generation in memetic algorithms // Natural Computing. 2004. Vol. 3, is. 1. P. 53-76. DOI: 10.1023/B:NACO.0000023419.83147.67
(check this in PDF content)
48
Smith J.E. Co-evolving memetic algorithms: A learning approach to robust scalable optimization // The 2003 Congress on Evolutionary Computation (CEC’03). Vol. 1. IEEE Press, 2003. P. 498-505. DOI: 10.1109/CEC.2003.1299617
(check this in PDF content)
49
Krasnogor N. Coevolution of genes and memes in memetic algorithms // Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program / ed. by A. Wu. 1999. P. 371.
(check this in PDF content)
50
Meuth R., Lim M.H., Ong Y.S., Wunsch II D.C. A proposition on memes and meta-memes in computing for higher-order learning // Memetic Computing. 2009. Vol. 1, is. 2. P. 85-100. DOI: 10.1007/s12293-009-0011-1
(check this in PDF content)
51
Cao Y.J., Wu Q.H. Convergence analysis of adaptive genetic algorithm // Second International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA 97). (Conf. Publ. No. 446). IEEE Publ., 1997. P. 85-89. DOI: 10.1049/cp:19971160
(check this in PDF content)
52
Knowles J., Corne D. M-PAES: A memetic algorithm for multiobjective optimization // Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000). Vol. 1. IEEE Publ., 2000. P. 325-332. DOI: 10.1109/CEC.2000.870313
(check this in PDF content)
53
Krasnogor N., Mocciola P., Pelta D., Ruiz G., Russo W. A runnable functional memetic algorithm framework // Proceedings of the Argentinian Congress on Computer Sciences. Universidad Nacional del Comahue, 1998. P. 525-536.
(check this in PDF content)
54
Tang J., Lim M.H., Ong Y.S. Parallel Memetic Algorithm with Selective Local Search for Large Scale Quadratic Assignment // International Journal of Innovative Computing, Information and Control. 2006. Vol. 2, no. 6. P. 1399-1416.
(check this in PDF content)
55
Hart W., Krasnogor N., Smith J.E. Memetic Evolutionary Algorithms // In book: Recent Advances in Memetic Algorithms. Springer Berlin Heidelberg, 2005. P. 3-27. DOI: 10.1007/3-540-32363-5_1 (Ser. Studies in Fuzziness and Soft Computing; vol. 166.).
(check this in PDF content)