The 19 references in paper A. Golubev E., A. Krishchenko P., А. Голубев Е., А. Крищенко П. (2016) “Решение терминальной задачи управления для аффинной системы при помощи многочленов // Polynomials-Based Terminal Control of Affine Systems” / spz:neicon:technomag:y:2015:i:2:p:101-114

1
Krasnowechenko V.I., Krishchenko A.P.Nelinejnye sistemy: geometricheskie metody analiza i sinteza[Nonlinear systems: geometric methods of analysis and synthesis]. Moscow, Bauman MSTU Publ., 2005. 520 p. (in Russian).
(check this in PDF content)
2
Zhevnin A.A., Krishchenko A.P. Controllability of nonlinear systems and synthesis of control algorithms.Doklady AN SSSR=Reports of Academy of Sciences of the USSR, 1981, vol. 258, no. 4, pp. 805{809. (in Russian).
(check this in PDF content)
3
Taranenko W.T.Dinamika samoleta s vertikal'nym vzletom i posadkoj[Aircraft dynamics with vertical take-off and landing]. Moscow, Mashinostroenie Publ., 1978. 278 p. (in Russian).
(check this in PDF content)
4
Batenko A.P.Sistemy terminal'nogo upravleniya[Terminal Control Systems]. Moscow, Radio i svyaz' Publ., 1984. 160 p. (in Russian).
(check this in PDF content)
5
Ermoshina O.V., Krishchenko A.P. Synthesis of Programmed Controls of Spacecraft Orientation by the Method of Inverse Problem of Dynamics.Izvestiya RAN. Teoriia i sistemy upravleniia, 2000, no. 2, pp. 155{162. (English version of journal:Journal of Computer and System Sciences International, 2000, vol. 39, no. 2, pp. 313{320.).
(check this in PDF content)
6
Velishchanskii M.A., Krishchenko A.P., Tkachev S.B. Synthesis of spacecraft reorientation algorithms using the consept of the inverse dynamic problem.Izvestiya RAN. Teoriia i sistemy upravleniia, 2003, no. 5, pp. 156{163. (English version of journal:Journal of Computer and System Sciences International, 2003, vol. 42, no. 5, pp. 811{818.).
(check this in PDF content)
7
Kanatnikov A.N., Krishchenko A.P. Terminal control of spatial motion of flying vehicles. Izvestiya RAN. Teoriia i sistemy upravleniia, 2008, no. 5, pp. 51{64. (English version of journal: Journal of Computer and Systems Sciences International, 2008, vol. 47, no. 5, pp. 718{731. DOI:10.1134/S1064230708050055).
(check this in PDF content)
8
Tang C.P., Miller P.T., Krovi V.N., Ryu J., Agrawal S.K. Differential-flatness-based planning and control of a wheeled mobile manipulator-theory and experiment.IEEE/ASME Trans. on Mechatronics, 2011, vol. 16, no. 4, pp. 768{773. DOI:10.1109/TMECH.2010.2066282
(check this in PDF content)
9
Kanatnikov A.N., Krishchenko A.P., Tkachev S.B. Admissible Spatial Trajectories of the Unmanned Aeral Vechicle in the Vertical Plane.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2012, no. 3. Available at: http://technomag.bmstu.ru/doc/367724.html, accessed 30.01.2015. (in Russian).
(check this in PDF content)
10
Emel'yanov S.V., Krishchenko A.P., Fetisov D.A. Controllability research on affine systems. Doklady Akademii Nauk, 2013, vol. 449, no. 1, pp. 15{18. (English version of journal:Doklady Mathematics, 2013, vol. 87, iss. 2, pp. 245{248. DOI:10.1134/S1064562413020026).
(check this in PDF content)
11
Krishchenko A.P., Fetisov D.A. Terminal control problem for affine systems.Differentsial'nye uravneniya, 2013, vol. 49, no. 11, pp. 1410{1420. (English version of journal:Differential Equations, 2013, vol. 49, iss. 11, pp. 1378{1388. DOI:10.1134/S0012266113110062).
(check this in PDF content)
12
Kanatnikov A.N. Design of aircraft trajectories with non-monotonic change in energy.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 4, pp. 107{122. DOI:10.7463/0413.0554666(in Russian).
(check this in PDF content)
13
Fetisov D.A. Solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 10, pp. 123{136. DOI:10.7463/1013.0604151(in Russian).
(check this in PDF content)
14
Nefedov G.A. Optimal trajectories for systems of canonical form.Inzhenernyy zhurnal: nauka i innovatsii=Engineering Journal: Science and Innovation, 2014, no. 1. Available at:http://engjournal.ru/catalog/eng/teormech/1186.html, accessed 30.01.2015. (in Russian).
(check this in PDF content)
15
Perruquetti W., Floquet T., Orlov Y. Finite time stabilization of interconnected second order nonlinear systems.Proc. of the 42ndIEEE Conference on Decision and Control. Vol. 5. IEEE, 2003, pp. 4599{4604. DOI:10.1109/CDC.2003.1272284
(check this in PDF content)
16
Cruz-Zavala E., Moreno J.A., Fridman L. Asymptotic stabilization in fixed time via sliding mode control.Proc. of the 51st Conference on Decision and Control (CDC). IEEE, 2012, pp. 6460{6465. DOI:10.1109/CDC.2012.6425999
(check this in PDF content)
17
Polyakov A. Fixed-time stabilization of linear systems via sliding mode control.Proc. of the 12thWorkshop on Variable Structure Systems. IEEE, 2012, pp. 1{6. DOI:10.1109/VSS. 2012.6163469
(check this in PDF content)
18
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems.IEEE Trans. on Automatic Control, 2012, vol. 57, no. 8, pp. 2106{2110. DOI: 10.1109/TAC.2011.2179869
(check this in PDF content)
19
Kurosh A.G.Kurs vysshei algebry[Course of Higher Algebra]. Moscow, Nauka Publ., 1968. 431 p. (in Russian).
(check this in PDF content)