The 12 references in paper M. Vinogradova S., М. Виноградова С. (2016) “Исследование нелинейной модели развития клеточной популяционной системы // Investigation of the Nonlinear Model of the Cellular Population System Development” / spz:neicon:technomag:y:2014:i:8:p:123-138

1
Bazykin A.D.Matematicheskaia biofizika vzaimodeistvuiushchikh populiatsii[Mathematical biophysics of interacting populations]. Moscow, Nauka Publ., 1985. 181 p. (in Russian).
(check this in PDF content)
2
Bochkov N.P., Vinogradova M.S., Volkov I.K., Kuleshov N.P. Mathematical Model of Dynamics of Total Quantities of Interacting Cell's Populations.Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman MSTU. Ser. Natural science, 2011, no. 1, pp. 18{24. (in Russian).
(check this in PDF content)
3
Vinogradova M.S. The qualitative analysis of model of functioning cooperating cellular populations.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2011, no. 11, pp. 1{20. Available at:http://technomag.edu.ru/doc/251409.html, accessed 07.07.2014. (in Russian).
(check this in PDF content)
4
Vinogradova M.S. Parametrical identification of a model of cooperating cellular populations on the basis of Bayesian approach.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2012, no. 11, pp. 155{182. DOI:10.7463/1112.0490900 (in Russian).
(check this in PDF content)
5
Vinogradova M.S. A dynamic model of the cellular population system.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 12, pp. 175{192. DOI:10.7463/1213.0646463(in Russian).
(check this in PDF content)
6
Volkov I.K. Identifiability conditions of mathematical models of evolutionary processes according to the results of discrete indirect measurements of the state vector.Izvestiia Rossiiskoi akademii nauk. Teoriia i sistemy upravleniia=Bulletin of the Russian Academy of Sciences. Theory and systems of control, 1994, no. 6, pp. 55{72. (in Russian).
(check this in PDF content)
7
Riznichenko G.Iu., Rubin A.V.Matematicheskie modeli biologicheskikh produktsionnykh protsessov[Mathematical models of biological production processes]. Moscow, MSU Publ., 1993. 301 p. (in Russian).
(check this in PDF content)
8
Romanovskiy Yu.M., Stepanova N.V., Chernavskiy D.S.Matematicheskaya biofizika[Mathematical biophysics]. Moscow, Nauka Publ., 1984. 304 p. (in Russian).
(check this in PDF content)
9
Chentsov Yu.S.Vvedenie v kletochnuyu biologiyu[Introduction to cell biology]. Moscow, Publishing Center "Akademkniga", 2004. 495 p. (in Russian).
(check this in PDF content)
10
Ducrot A., Le Foll F., Magal P., Murakawa H., Pasquier J., Webb G.F. An in vitro cell population dynamics model incorporating cell size, quiescence, and contact inhibition.Mathematical Models and Methods in Applied Sciences, 2011, vol. 21, iss. sup. 01, pp. 871{892. DOI: 10.1142/S0218202511005404
(check this in PDF content)
11
Kresnowati M.T., Forde G.M., Chen X.D. Model-based analysis and optimization of bioreactor for hematopoietic stem cell cultivation.Bioprocess and Biosystems Engineering, 2011, vol. 34, no. 1, pp. 81{93. DOI:10.1007/s00449-010-0449-z
(check this in PDF content)
12
Winkler D.A., Burden F.R. Robust, quantitative tools for modelling ex-vivo expansion of haematopoietic stem cells and progenitors.Molecular BioSystems, 2012, vol. 8, no. 3, pp. 913{ 920. DOI:10.1039/c2mb05439f
(check this in PDF content)