The 55 references in paper A. Karpenko P., I. Shibitov A., S. Groshev V., V. Belous V., А. Карпенко П., В. Белоус В., И. Шибитов А., С. Грошев В. (2016) “Программные системы для оценки качества Парето-аппроксимации в задаче многокритериальной оптимизации. Обзор // Programme systems to estimate the Pareto-approximation quality in the problem of multi-criteria optimization. A review.” / spz:neicon:technomag:y:2014:i:4:p:300-320

1
Лотов А.В., Поспелова И.И. Многокритериальные задачи принятия решений: учеб. пособие. М.: МАКС Пресс, 2008. 197 c.
(check this in PDF content)
2
Карпенко А.П., Семенихин А.С., Митина Е.В. Популяционные методы аппроксимации множества Парето в задаче многокритериальной оптимизации // Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012. No 4. Режим доступа: http://www.technomag.edu.ru/doc/363023.html (дата обращения 01.03.2014).
(check this in PDF content)
3
Белоус В.В., Грабик А.В., Грошев С.В., Шибитов И.А. Качество Паретоаппроксимации в задаче многокритериальной оптимизации // XVIII Байкальская Всероссийская конференция «Информационные и математические технологии в науке и управлении»: материалы. Ч. 1. Иркутск: ИСЭМ СО РАН, 2013. С. 6-12.
(check this in PDF content)
4
Zitzler E., Deb K., Thiele L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results // Evolutionary Computation. 2000. Vol. 8, no. 2. P. 173-195.
(check this in PDF content)
5
Lukasiewycz M., Glass M., Reimann F., Teic J. Opt4J - A Modular Framework for Metaheuristic Optimization // Proceedings of the Genetic and Evolutionary Computing Conference, 2011. P. 1723-1730.
(check this in PDF content)
6
Google Guice. Available at: https://code.google.com/p/google-guice/ , accessed 01.03.2014.
(check this in PDF content)
7
SAT4j. Available at: http://www.sat4j.org/ , accessed 01.03.2014.
(check this in PDF content)
8
Ptplot. Available at: http://ptolemy.eecs.berkeley.edu/java/ptplot/ , accessed 01.03.2014.
(check this in PDF content)
9
Zitzler E., Laumanns M., Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization // In: Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001) / K. Giannakoglou, et al., editors. International Center for Numerical Methods in Engineering (CIMNE), 2002. P. 95-100.
(check this in PDF content)
10
Agrawal S., Pratap A., Meyarivan T., Deb K. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II // In: Parallel Problem Solving from Nature PPSN VI. Springer Berlin Heidelberg, 2000. P. 849-858. DOI: 10.1007/3-54045356-3_83
(check this in PDF content)
11
Reyes Sierra M., Coello Coello C.A. Improving PSO-based Multi-Objective Optimization using Crowding, Mutation and e-Dominance // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2005. P. 505-519. DOI: 10.1007/978-3-540-31880-4_35
(check this in PDF content)
12
Emmerich M., Beume N., Naujoks B. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2005. P. 62-76. DOI: 10.1007/978-3-540-31880-4_5
(check this in PDF content)
13
Deb K., Thiele L., Laumanns M., Zitzler E. Scalable Test Problems for Evolutionary MultiObjective Optimization. Tech. Rep. 112. Zurich, Switzerland, 2001. 27 p.
(check this in PDF content)
14
Barone L., While L., Huband L., Hingston S. Use of the WFG Toolkit and PISA for Comparison of MOEAs // Proceedings of IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, 2007. P. 382-389. DOI: 10.1109/MCDM.2007.369117
(check this in PDF content)
15
Laumanns M., Thiele L., Zitzler E. Running Time Analysis of Multiobjective Evolutionary Algorithms on Pseudo-Boolean Functions // IEEE Transactions on Evolutionary Computation. 2004. Vol. 8, no. 2. P. 170–182. DOI: 10.1109/TEVC.2004.823470
(check this in PDF content)
16
Zitzler E., Thiele L., Laumanns M., Fonseca C.V., Fonseca V.G. Performance Assessment of Multiobjective Optimizers: An Analysis and Review // IEEE Transactions of Evolutionary Computation. 2003. Vol. 7, no. 2. P. 117-132. DOI: 10.1109/TEVC.2003.810758
(check this in PDF content)
17
Durillo J.J., Nebro A.J. jMetal: A Java Framework for Multi-Objective Optimization // Advances in Engineering Software. 2011. Vol. 42. P. 760-771.
(check this in PDF content)
18
Kukkonen S., Lampinen J. GDE3: The Third Evolution Step of Generalized Differential Evolution. KanGAL Report No. 2005013, 2005. P. 443-450.
(check this in PDF content)
19
Knowles J., Corne D. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimization // Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, NJ, 1999. P. 98-105.
(check this in PDF content)
20
Beume N. SMS-EMOA: Multiobjective selection based on dominated hypervolume // European Journal of Operational Research. 2007. Vol. 181, no. 3. P. 1653-1669.
(check this in PDF content)
21
Li H., Zhang Q. Multiobjective Optimization problems with Complicated Pareto Sets, MOEA/D and NSGA-II // IEEE Transactions on Evolutionary Computation. 2009. Vol. 13, no. 2. P. 284-302. DOI: 10.1109/TEVC.2008.925798
(check this in PDF content)
22
Nebro О. Optimal Antenna Placement using a New Multiobjective CHC Algorithm // Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, London, England, 2007. P. 876-883.
(check this in PDF content)
23
Zitzler E., Kunzli S. Indicator-based selection in multi objective search // In: Parallel Problem Solving from Nature - PPSN VIII. Springer Berlin Heidelberg, 2004. P. 832-842. DOI: 10.1007/978-3-540-30217-9_84 (Ser. Lecture Notes in Computer Science; vol. 3242).
(check this in PDF content)
24
Eskandari H., Geiger C.D., Lamont G.B. FastPGA: A Dynamic Population Sizing Approach for Solving Expensive Multiobjective Optimization Problems // In: Evolutionary MultiCriterion Optimization. Springer Berlin Heidelberg, 2007. P. 141-155. DOI: 10.1007/978-3540-70928-2_14
(check this in PDF content)
25
Greiner D., Emperador J.M., Winter G. Enhancing the multiobjective optimum design of structural trusses with evolutionary algorithms using DENSEA // In: 44th AIAA (American Institute of Aeronautics and Astronautics) Aerospace Sciences Meeting and Exhibit, 2006. Paper AIAA-2006-1474 (11 p).
(check this in PDF content)
26
Durillo J.J., Nebro A.J., Luna F., Alba E. Solving Three-Objective Optimization Problems. Using a new Hybrid Cellular Genetic Algorithm // In: Parallel Problem Solving from Nature - PPSN X. Springer Berlin Heidelberg, 2008. P. 661-670. DOI: 10.1007/978-3-540-877004_66
(check this in PDF content)
27
Vavak F., Fogarty T.C. Comparison of Steady State and Generational Genetic Algorithms for Use in Nonstationary Environments // Proc. of the IEEE International Conference on Evolutionary Computation, 1996. P. 192-195. DOI: 10.1109/ICEC.1996.542359
(check this in PDF content)
28
Hansen N.R., Ros N., Mauny M., Auger S.A. Impacts of Invariance in Search: When CMAES and PSO Face Ill-Conditioned and Non-Separable Problems // Applied Soft Computing. 2011. Vol. 11. P. 5755-5769.
(check this in PDF content)
29
Nebro J., Durillo J.J., Coello Coello C.A. Analysis of Leader Selection Strategies in a MultiObjective Particle Swarm Optimizer // 2013 IEEE Congress on Evolutionary Computation, 2013. P. 3153 - 3160. DOI: 10.1109/CEC.2013.6557955
(check this in PDF content)
30
Nebro A.J., Luna F., Alba E., Dorronsoro B., Durillo J.J., Beham A. AbYSS. Adapting Scatter Search to Multiobjective Optimization // IEEE Transactions on Evolutionary Computation. 2006. Vol. 12, no. 4. P. 439-457. DOI: 10.1109/TEVC.2007.913109
(check this in PDF content)
31
Nebro J., Durillo J.J., Luna F., Dorronsoro B., Alba E. MOCell. A Cellular Genetic Algorithm for Multiobjective Optimization // International Journal of Intelligent Systems. 2009. Vol. 24, no. 7. P. 726-746.
(check this in PDF content)
32
Bleuler S., Laumanns M., Thiele L., Zitzler E. PISA—A Platform and Programming Language Independent Interface for Search Algorithms // In: Evolutionary Multi-Criterion Optimization. Springer Berlin Heidelberg, 2003. P. 494–508. DOI: 10.1007/3-540-36970-8_35
(check this in PDF content)
33
MOEA Framework. Available at: http://moeaframework.org/documentation.html , accessed 01.03.2014.
(check this in PDF content)
34
Knowles J.D., Thiele L., Zitzler E. A tutorial on the performance assessment of the stochastic multiobjective optimizers. TIK-Report No. 214. Computer Engineering and Network Laboratory, ETH Zurich, 2006. 35 p.
(check this in PDF content)
35
Hadka D., Reed P. Diagnostic assessment of search controls and failure modes in manyobjective evolutionary optimization // Evolutionary Computation. 2012. Vol. 20, no. 3. P. 423-452.
(check this in PDF content)
36
Karpenko A.P., Svianadze Z.O. Meta-optimization based on self-organizing map and genetic algorithm // Optical Memory and Neural Networks (Information Optics). 2011. Vol. 20, no.4. P. 279-283.
(check this in PDF content)
37
ParadisEO. Available at: http://paradiseo.gforge.inria.fr , accessed 01.03.2014.
(check this in PDF content)
38
Liefooghe L., Jourdan T., Legrand J., Talbi G. ParadisEO-MOEO: A Software Framework for Evolutionary Multi-objective Optimization // In: Advances in Multi-objective Nature Inspired Computing. Springer Berlin Heidelberg, 2010. P. 87-117. DOI: 10.1007/978-3-64211218-8_5 (Ser. Studies in Computational Intelligence; vol. 272).
(check this in PDF content)
39
Basseur M., Burke E.K. Indicator-based multi-objective local search // IEEE Congress on Evolutionary Computation (CEC'2007), 2007. P. 3100-3107. DOI: 10.1109/CEC.2007.4424867
(check this in PDF content)
40
Liefooghe J., Humeau S., Mesmoudi S., Jourdan L. On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems // Journal of Heuristics. 2011. Vol. 18, iss. 2. P. 317-352. DOI: 10.1007/s10732-011-9181-3
(check this in PDF content)
41
Huang J., Zhao F., Chen J., Pei J., Yin J. Towards Progressive and Load Balancing Distributed Computation: A Case Study on Skyline Analysis // Journal of Computer Science and Technology. 2010. Vol. 25, no. 3. P. 431-443.
(check this in PDF content)
42
Christophe D., Raphael C., Fabienne J. Load balancing of the direct linear multisplitting method in a grid computing environment. Tech. rep. LIFC, 2008. 29 p.
(check this in PDF content)
43
Watchmaker Framework for Evolutionary Computation. Evolving the Mona Liza. Available at: http://watchmaker.uncommons.org/examples/monalisa.php , accessed 01.03.2014.
(check this in PDF content)
44
Watchmaker Framework for Evolutionary Computation. An Evolutionary Sudoku Solver. Available at: http://watchmaker.uncommons.org/examples/sudoku.php , accessed 01.03.2014.
(check this in PDF content)
45
Watchmaker Framework for Evolutionary Computation. Watchmaker. Biomorphs. Available at: http://watchmaker.uncommons.org/examples/biomorphs.php , accessed 01.03.2014.
(check this in PDF content)
46
A Java-based Evolutionary Computation Research System. Available at: http://cs.gmu.edu/~eclab/projects/ecj/ , accessed 01.03.2014.
(check this in PDF content)
47
Java Genetic Algorithm Package. Available at: http://jgap.sourceforge.net/ , accessed 01.03.2014.
(check this in PDF content)
48
JCLEC - Java Class Library for Evolutionary Computation. Available at: http://jclec.sourceforge.net/ , accessed 01.03.2014.
(check this in PDF content)
49
A Java-based framework for Evolutionary Algorithms (Java/EvA). Available at: http://www.ra.cs.uni-tuebingen.de/software/JavaEvA/ , accessed 01.03.2014.
(check this in PDF content)
50
Genetic Algorithm Playground. Available at: www.aridolan.com/ga/gaa/gaa.html , accessed 01.03.2014.
(check this in PDF content)
51
Jenes. Genetic Algorithms in Java. Available at: http://jenes.intelligentia.it/ , accessed 01.03.2014.
(check this in PDF content)
52
Evolving Objects (EO): An Evolutionary Computation Framework. Available at: http://eodev.sourceforge.net/ , accessed 01.03.2014.
(check this in PDF content)
53
Parizeau G.M. Genericity in Evolutionary Computation Software Tools: Principles and Case Study // International Journal on Artificial Intelligence Tools. 2006. Vol. 15, no. 2. P. 173194.
(check this in PDF content)
54
HeuristicLab: Paradigm-independent and Extensible Environment for Heuristic Optimization. Available at: http://dev.heuristiclab.com/trac/hl/core , accessed 01.03.2014.
(check this in PDF content)
55
Wagner S., Kronberger G., Beham A., Kommenda M., Scheibenpflug A., Pitzer E., Vonolfen S., Kofler M., Winkler S., Dorfer V., Affenzeller M. Architecture and Design of the HeuristicLab Optimization Environment // In: Advanced Methods and Applications in Computational Intelligence. Springer International Publishing, 2014. P. 197-261. DOI: 10.1007/978-3-319-01436-4_10 (Ser. Topics in Intelligent Engineering and Informatics;
(check this in PDF content)