The 15 references in paper P. Sotnikov I., П. Сотников И. (2016) “Выделение характерных признаков сигнала электроэнцефалограммы с помощью анализа энтропии // Entropy Analysis as an Electroencephalogram Feature Extraction Method” / spz:neicon:technomag:y:2014:i:1:p:555-570

1
Dornhege G., Millan J. del R., Hinterberger T., McFarland D.J., Müller K.-R., eds. Toward Brain-Computer Interfacing. A Bradford book. The MIT Press, 2007. 520 p.
(check this in PDF content)
2
Кропотов Ю.Д. Количественная ЭЭГ, когнитивные вызванные потенциалы мозга человека и нейротерапия. Донецк: Издатель Заславский А.Ю., 2010. 512 с.
(check this in PDF content)
3
Kalcher J., Pfurtscheller G. Discrimination between phase-locked and non-phase-locked event-related EEG activity // Electroencephalography and Clinical Neurophysiology. 1995. Vol. 94, no. 5. P. 381-384. DOI: 10.1016/0013-4694(95)00040-6
(check this in PDF content)
4
Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles // Clinical Neurophysiology. 1999. Vol. 110, iss. 11. P. 1842-1857. DOI: 10.1016/S1388-2457(99)00141-8
(check this in PDF content)
5
Xu B., Song A. Pattern Recognition of Motor Imagery EEG using Wavelet Transform // Journal of Biomedical Science and Engineering. 2008. Vol. 1, no. 1. P. 64-67. DOI: 10.4236/jbise.2008.11010
(check this in PDF content)
6
Седов А.С., Раева С.Н. Применение вейвлет-анализа для исследования импульсной активности нейронов головного мозга человека // Нейроинформатика. 2007. Т. 2, No 1. С. 77-92.
(check this in PDF content)
7
Blankertz B., Tomioka R., Lemm S., Kawanabe M., Muller K.-R. Optimizing Spatial Filters for Robust EEG Single-Trial Analysis // IEEE Signal Processing Magazine. 2008. Vol. 25, iss. 1. P. 41-56. DOI: 10.1109/MSP.2008.4408441
(check this in PDF content)
8
Zhang D., Wang Y., Gao X. An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface // Computational Intelligence and Neuroscience. 2007. Vol. 2007. Art. no. ID 39714. DOI: 10.1155/2007/39714
(check this in PDF content)
9
Brunner C., Billinger M., Vidaurre C., Neuper C. A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interfaces // Medical and Biological Engineering and Computing. 2011. Vol. 49, iss. 11. P. 1337-1346. DOI:
(check this in PDF content)
10
1007/s11517-011-0828-x 10. Немирко А.П., Манило Л.А., Калиниченко А.Н. Сравнительный анализ применения различных оценок энтропии ЭЭГ-сигнала для распознавания стадий наркоза // Биотехносфера. 2010. No 3. С. 3-10.
(check this in PDF content)
11
Oskoei M.A., Hu H. Support vector machine-based classification scheme for myoelectric control applied to upper limb // IEEE Transactions on Biomedical Engineering. 2008. Vol. 55, no. 8. P. 1956-1965. DOI: 10.1109/TBME.2008.919734
(check this in PDF content)
12
Хайкин С. Нейронные сети: полный курс: пер. с англ. 2-е изд. М.: Издательский дом «Вильямс», 2006. 1104 с.
(check this in PDF content)
13
Chen P.H., Lin C.J., Scholkopf B. A tutorial on ν-support vector machines // Applied Stochastic Models in Business and Industry. 2005. Vol. 21, iss. 2. P. 111-136. DOI: 10.1002/asmb.537
(check this in PDF content)
14
Brunner C., Leeb R., Müller-Putz G., Schlögl A., Pfurtscheller G. BCI Competition 2008 - Graz data set A // BBCI: Berlin Brain-Computer Interface: website. Режим доступа: http://www.bbci.de/competition/iv/ (дата обращения 01.08.2014).
(check this in PDF content)
15
Fang Y., Chen M., Zheng X. Feature Extraction of Motor Imagery in BCI with Approximate Entropy // Journal of Computational Information Systems. 2012. Vol. 8, no. 6. P. 24852491. Science and Education of the Bauman MSTU,
(check this in PDF content)