The 14 references in paper D. Fetisov A., Д. Фетисов А. (2016) “Достаточное условие управляемости многомерных аффинных систем // Sufficient Controllability Condition for Multidimensional Affine Systems” / spz:neicon:technomag:y:2014:i:1:p:281-293

1
Kovalev A.M.Nelineynye zadachi upravleniya i nablyudeniya v teorii dinamicheskikh system [Nonlinear problems of control and observation in dynamical systems theory]. Kiev, Naukova dumka Publ., 1980. 174 p. (in Russian).
(check this in PDF content)
2
Krasnoshchechenko V.I., Krishchenko A.P.Nelineinye sistemy: geometricheskie metody analiza i sinteza[Nonlinear systems: geometric methods for analysis and synthesis]. Moscow, Bauman MSTU Publ., 2005. 520 p. (in Russian).
(check this in PDF content)
3
Elkin V.I.Reduktsiya nelineynykh upravlyaemykh sistem: differentsial'no-geometricheskiy podkhod[Reduction of nonlinear control systems: differential-geometric approach]. Moscow, Nauka Publ., 1997. 320 p. (in Russian).
(check this in PDF content)
4
Zhevnin A.A., Krishchenko A.P. Controllability of nonlinear systems and synthesis of control algorithms.DAN SSSR=Reports of Academy of Sciences of the USSR, 1981, vol. 258, no. 4, pp. 805{809. (in Russian).
(check this in PDF content)
5
Sun Y. Necessary and sufficient condition for global controllability of planar affine nonlinear systems.IEEE Transactions on Automatic Control, 2007, vol. 52, no. 8, pp. 1454{1460. DOI: 10.1109/TAC.2007.902750
(check this in PDF content)
6
Caines P.E., Lemch E.S. On the global controllability of nonlinear systems: fountains, recurrence, and applications to hamiltonian systems.SIAM J. Contr. Optim., 2003, vol. 41, no. 5, pp. 1532{1553.
(check this in PDF content)
7
Sun Y. Further results on global controllability of planar nonlinear systems.IEEE Transactions on Automatic Control, 2010, vol. 55, no. 8, pp. 1872{1875. DOI:10.1109/TAC.2010.2048054
(check this in PDF content)
8
Sun Y., Mei S., Lu Q. On global controllability of planar affine nonlinear systems with a singularity.Systems and Control Letters, 2009, vol. 58, no. 2, pp. 124{127. DOI: 10.1016/j.sysconle.2008.09.007
(check this in PDF content)
9
Krishchenko A.P., Klinkovskii M.G. Transformation of affine systems with control and stabilization problem.Differentsial'nye uravneniia=Differential Equations, 1992, vol. 28, no. 1, pp. 1945{1952. (in Russian).
(check this in PDF content)
10
Fetisov D.A. Study of Controllability of Regular Systems of Quasi-canonical Type.Vestnik MGTU im.N.E. Baumana. Ser. Estestvennye nauki=Herald of the Bauman MSTU. Ser. Natural science, 2006, no. 3, pp. 12{30. (in Russian).
(check this in PDF content)
11
Emel'yanov S.V., Krishchenko A.P., Fetisov D.A. Controllability research on affine systems. Doklady Akademii Nauk, 2013, vol. 449, no. 1, pp. 15{18. (English translation:Doklady Mathematics, 2013, vol. 87, iss. 2, pp. 245{248. DOI:10.1134/S1064562413020026).
(check this in PDF content)
12
Isidori A.Nonlinear control systems. 3rd ed. London, Springer, 1995. 549 p. DOI: 10.1007/978-1-84628-615-5
(check this in PDF content)
13
Krsti-c M., Kanellakopoulos I., Kokotovi-c P.V.Nonlinear and adaptive control design. New York, John Wiley and Sons, 1995. 563 p.
(check this in PDF content)
14
Fetisov D.A. A method for solving terminal control problems for affine systems.Nauka i obrazovanie MGTU im. N.E. Baumana=Science and Education of the Bauman MSTU, 2013, no. 11, pp. 383{400. DOI:10.7463/1113.0622543(in Russian).
(check this in PDF content)