The 22 references in paper N. Bezverkhniy V., O. Chernisheva A., Н. Безверхний В., О. Чернышева А. (2016) “Односторонние функции, основанные на проблеме дискретного логарифмирования в группах с условиями C(3)-T(6) // One-way functions based on the discrete logarithm problem in the groups meeting conditions C(3)-T (6)” / spz:neicon:technomag:y:2014:i:0:p:70-101

1
Magnus W., Karras A., Solitar D.Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations. John Wiley and Sons, Inc., New York-London-Sydney, 1966. 444 p. (Russ. ed.: Magnus W., Karras A., Solitar D.Kombinatornaja teorija grupp. Moscow, Nauka Publ., 1974. 456 p.).
(check this in PDF content)
2
Lyndon R., Schupp P.Combinatorial group theory. Springer-Verlag, Berlin, 1977. (Russ. ed.: Lyndon R., Schupp P.Kombinatornaja teorija grupp. Moscow, Mir Publ., 1980. 448 p.).
(check this in PDF content)
3
Ol'shanskii A.Iu.Geometriia opredeliaiushchikh sootnoshenii v gruppakh[The geometry of dening relations in groups]. Moscow, Nauka Publ., 1989. 448 p. (in Russian).
(check this in PDF content)
4
Novikov P.S. On the algorithmic unsolvability of word identity problem in group theory.Tr. Matematicheskogo in-ta AN SSSR[Proc. of Mathematical Institute of the USSR Academy of Sciences], 1955, vol. 44, pp. 1{144. (in Russian).
(check this in PDF content)
5
Bezverkhnij N.V. On the solvability of the general word problem for a cyclic subgroup of a group with conditionC(6).Fundamental'naia i prikladnaia matematika, 1999, vol. 5, no. 1, pp. 39{46. (in Russian).
(check this in PDF content)
6
Bezverhnij N.V. Normal forms for elements of infinite order in group withC(3)-T(6)condition. Izvestija TulGU. Estestvennye nauki, 2010, iss. 1, pp. 6{25. (in Russian).
(check this in PDF content)
7
Bezverhnij N.V. The power conjugacy search problem in a cyclic subgroup in groups with the conditionC(3)-T(6).Diskretnaja matematika, 2012, vol. 24, iss. 4, pp. 27{46. (English Translation:Discrete Mathematics and Applications, 2012, vol. 22, iss. 5{6, pp. 521{544. DOI:10.1515/dma-2012-036).
(check this in PDF content)
8
Bezverhnij V.N. On normalizers of elements inC(p)-T(q)-groups.Algoritmicheskie problemy teorii grupp i polugrupp: mezhvuz. sb. nauch. trudov[Algorithmic problems of the theory of groups and semigroups: interuniversity collection of scientific papers]. Tula, Tolstoi TSPU Publ., 1994, pp. 4{58. (in Russian).
(check this in PDF content)
9
Bezverhnij V.N., Parshikova E.V. The solution of problems of integration in a cyclic subgroup of a group with conditionC(4)-T(4).Algoritmicheskie problemy teorii grupp i polugrupp: mezhvuz. sb. nauch. trudov[Algorithmic problems of the theory of groups and semigroups: interuniversity collection of scientific papers]. Tula, Tolstoi TSPU Publ., 2001, pp. 120{139. (in Russian).
(check this in PDF content)
10
Glukhov M.M. An analysis of some key distribution public systems based on non-abelian groups.Matematicheskie voprosy kriptografii, 2010, vol. 1, no. 4, pp. 5{22. (in Russian).
(check this in PDF content)
11
Parshikova E.V. The problem of weak power conjugacy in groups with conditionC(4)-T(4). Algoritmicheskie problemy teorii grupp i polugrupp: mezhvuz. sb. nauch. trudov[Algorithmic problems of the theory of groups and semigroups: interuniversity collection of scientific papers]. Tula, Tolstoi TSPU Publ., 2001, pp. 179{185. (in Russian).
(check this in PDF content)
12
Bezverhnij N.V.O kruchenii i o razreshimosti problemy vhozhdenija v ciklicheskuju podgruppu v gruppah s usloviemC(6)[On torsion and solvability of the general word problem for a cyclic subgroup of a group with conditionC(6)]. Moscow, 1995. Dep. VINITI no. 2033{V95. (in Russian).
(check this in PDF content)
13
Bogley W.A., Pride S.J. Aspherical relative presentations.Proc. of Edinburg Math. Soc. Ser. 2. 1992, vol. 35, no. 1, pp. 1{39. DOI:10.1017/S0013091500005290
(check this in PDF content)
14
Gersten Sh., Short H.B. Small cancellation theory and automatic groups.Inventiones Mathematicae, 1990, vol. 102, iss. 1, pp. 305{334. DOI:10.1007/BF01233430
(check this in PDF content)
15
Shor P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.SIAM Journal on Computing, 1997, vol. 26, no. 5, pp. 1484{1509. DOI: 10.1137/S0097539795293172
(check this in PDF content)
16
Anshel I., Anshtl M., Goldfeld D. An algebraic method for public key cryptography.Mathematical Research Letters, 1999, vol. 6, no. 3, pp. 287{291. DOI:10.4310/MRL.1999.v6.n3.a3
(check this in PDF content)
17
Ko K.H., Lee S.J., Cheon J.H., Han J.W., Kang J., Park C. New Public-Key Cryptosystem Using Braid Groups. In:Advances in Cryptology | CRYPTO 2000. Springer Berlin Heidelberg, 2000, pp. 166{183. (Ser.Lecture Notes in Computer Science; vol. 1880). DOI: 10.1007/3-540-44598-610
(check this in PDF content)
18
Yamamura A. Public-key cryptosystems using the modular group. In:Public Key Cryptography. Springer Berlin Heidelberg, 1998, pp. 203{216. (Ser.Lecture Notes in Computer Science; vol. 1431). DOI:10.1007/BFb0054026
(check this in PDF content)
19
Yamamura A. A Functional Cryptosystem Using a Group Action. In:Information Security and Privacy. Springer Berlin Heidelberg, 1999, pp. 314{325. (Ser.Lecture Notes in Computer Science; vol. 1587). DOI:10.1007/3-540-48970-326
(check this in PDF content)
20
Paeng S.-H., Ha K.-C., Kim J.H., Chee S., Park C. New Public Key Cryptosystem Using Finite Non Abelian Groups. In:Advances in Cryptology | CRYPTO 2001. Springer Berlin Heidelberg, 2001, pp. 470{485. (Ser.Lecture Notes in Computer Science; vol. 2139). DOI: 10.1007/3-540-44647-828
(check this in PDF content)
21
Paeng S.-H., Kwon D., Ha K.-C., Kim J.H.Improved public key cryptosystem using non abelian groups. Cryptology ePrint Archive: Report 2001/066. Available at: http://eprint.iacr.org/2001/066, accessed 01.09.2014.
(check this in PDF content)
22
Sakalauskas E., Tvarijonas P., Raulinaitis A. Key agreement protocol (KAP) using conjugacy and discrete logarithms problems in group representation level.Informatica, 2007, vol. 18, no. 1, pp. 115{124.
(check this in PDF content)