The 13 linked references in paper I. Ryzhkov A., A. Kirsanova K., Yu. Zarzhetsky V., И. Рыжков А., А. Кирсанова К., Ю. Заржецкий В. (2014) “АМПЛИТУДНО-ЧАСТОТНЫЙ СПЕКТР КОЛЕБАНИЙ МОЗГОВОГО КРОВОТОКА ПРИ ГЕМОРРАГИЧЕСКОМ ШОКЕ // The Amplitude and Frequency Spectrum of Cerebral Blood Flow Fluctuations in Hemorrhagic Shock” / spz:neicon:reanimatology:y:2014:i:2:p:6-17

  1. Donati A., Domizi R., Damiani E., Adrario E., Pelaia P., Ince C. From macrohemodynamic to the microcirculation. Crit. Care Res. Pract. 2013; 2013: 892710. http://dx.doi.org/10.1155/2013/892710. PMID: 23509621
  2. Tonnesen J., Pryds A., Larsen E.H., Paulson O.B., Hauerberg J., Knudsen G.M.LaserDoppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats. Exp. Physiol. 2005; 90 (3): 349—355. http://dx.doi.org/10.1113/expphysiol.2004.029512. PMID: 15653714
  3. Kuroiwa T., Bonnekoh P., Hossmann K.A.Laser doppler flowmetry in CA1 sector of hippocampus and cortex after transient forebrain ischemia in gerbils. Stroke. 1992; 23 (9): 1349—1354. http://dx.doi.org/10.1161/01.STR.23.9.1349. PMID: 1519291
  4. Morita Y., Hardebo J.E., Bouskela E.Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol. Scand. 1995; 154 (2): 121—130. http://dx.doi.org/10.1111/j.1748—1716.1995.tb09894.x. PMID: 7572208
  5. Aleksandrin V.V.Ispolzovanie metoda lazernoi dopplerovskoi floumetrii dlya opredeleniya nizhnei granitsy autoregulyatsii mozgovogo krovotoka u krys. [Use of laser Doppler flowmetry to determine the lower limit of cerebral blood flow autoregulation in rats]. Metodologiya Floumetrii.2000; 4: 139—144. [In Russ.] 1.Gutierrez G., Reines H.D., Wulf\rGutierrez M.E.Clinical review: hemorculation is protected during experimtntal hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928—932. http://dx.doi.org/10. 1097/CCM.0b013e3181cd100c. PMID: 20068466 23. du Toit D.F., van Schalkwyk G.D., Wadee S.A., Warren B.L. Neurologic outcome after penetrating extracranial arterial trauma. J. Vasc. Surg. 2003; 38 (2): 25
  6. Li Z., Tam E.W., Kwan M.P., Mak A.F., Lo S.C., Leung M.C. Effects of prolonged surface pressure on the skin blood flowmotions in anaesthetized rats—an assessment by spectral analysis of laser Doppler flowmetry signals. Phys. Med. Biol. 2006; 51 (10): 2681—2694. http://dx.doi.org/10.1088/0031—9155/51/10/020. PMID: 16675876
  7. Wan Z., Sun S., Ristagno G., Weil V.H., Tang W.The cerebral microcirculation is protected during experimtntal hemorrhagic shock. Crit. Care Med. 2010; 38 (3): 928—932. http://dx.doi.org/10.1097/ CCM.0b013e3181cd100c. PMID: 20068466
  8. du Toit D.F., van Schalkwyk G.D., Wadee S.A., Warren B.L. Neurologic outcome after penetrating extracranial arterial trauma. J. Vasc. Surg. 2003; 38 (2): 257—262. http://dx.doi.org/10.1016/S0741— 5214(03)00143—5. PMID: 12891106
  9. Werner C., Lu H., Engelhard K., Unbehaun N., Kochs E.Sevoflurane impairs cerebral blood flow autoregulation in rats: reversal by nonselective nitric oxide synthase inhibition. Anesth. Analg. 2005; 101 (2): 509—516. http://dx.doi.org/10.1213/01.ANE.0000160586.71403.A4. PMID: 16037169
  10. Aalkjær C., Boedtkjer D., Matchkov V.Vasomotion — what is currently thought? Acta Physiol. (Oxf.). 2011; 202 (3): 253—269. http://dx. doi.org/10.1111/j.1748—1716.2011.02320.x. PMID: 21518271
  11. Goldman D., Popel A.S.A computational study of the effect of vasomotion on oxygen transport from capillary networks. J. Theor. Biol.2001; 209 (2): 189—199. http://dx.doi.org/10.1006/jtbi.2000.2254. PMID: 11401461
  12. Sakurai T., Terui N. Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange. Am. J. Physiol. Heart Circ. Physiol. 2006; 291 (4): H1761—H1767. http://dx.doi.org/10.1152/ajpheart.00280. 2006. PMID: 16731646
  13. Thorn C.T., Kyte H., Slaff D.W., Shore A.C.An association between vasomotion and oxygen extraction. Am. J. Physiol. Heart Circ. Physiol. 2011; 301 (2): H442—H449. http://dx.doi.org/10.1152/ajpheart.01316.2010. PMID: 21602466