The 12 linked references in paper S. Belim V., S. Larionov B., С. Белим В., С. Ларионов Б. (2017) “Алгоритм сегментации изображения с помощью искусственной нейронной сети без использования других изображений // The Neural Network-aided Image Segmentation Algorithm Without Involving Additional Images” / spz:neicon:radiovega:y:2017:i:3:p:43-53

  1. Kuntimad G., Ranganath H.S. Perfect image segmentation using pulse coupled neural networks // IEEE Trans. on Neural Networks. 1999. Vol. 10. No. 3. Pp. 591–598. DOI: 10.1109/72.761716
  2. Ma Yide, Liu Qing, Qian Zhibo. Automated image segmentation using improved PCNN model based on cross-entropy // Intern. symp. on intelligent multimedia, video and speech processing: ISIMP 2004 (Hong Kong, October 20–22, 2004): Proc. N.Y.: IEEE, 2004. Pp. 743-746. DOI: 10.1109/ISIMP.2004.1434171
  3. Xiao-Dong Gu, Shi-De Guo, Dao-Heng Yu. A new approach for automated image segmentation based on unit-linking PCNN // 1st Intern. conf. on machine learning and cybernetics: ICMLC 2002 (Beijing, China, November 4-5, 2002): Proc. N.Y.: IEEE, 2002. Pp. 175-178. DOI: 10.1109/ICMLC.2002.1176733
  4. Stewart R.D., Fermin I., Opper M. Region growing with pulse-coupled neural networks: An alternative to seeded region growing // IEEE Trans. on Neural Networks. 2002. Vol. 13. No. 6. Pp. 1557–1562. DOI: 10.1109/TNN.2002.804229
  5. Hai-Rong Ma, Xin-Wen Cheng. Automatic image segmentation with PCNN algorithm based on grayscale correlation // Intern. J. of Signal Processing, Image Processing and Pattern Recognition. 2014. Vol. 7. No. 5. Pp. 249–258. DOI: 10.14257/ijsip.2014.7.5.22
  6. Nemirovsky V.B., Stoyanov A.K. Multi-step segmentation of images by means of a recurrent neural network // 7th Intern. forum on strategic technology: IFOST-2012 (Tomsk, Russia, Sept. 18–21, 2012). N.Y.: IEEE, 2012. Vol. 1. Pp. 557–560. DOI: 10.1109/IFOST.2012.6357619
  7. Yao K.C., Mignotte M., Collet C., Galerne P., Burel G. Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery // Pattern Recognition. 2000. Vol. 33. No. 9. Pp. 1575–1584. DOI: 10.1016/S0031-3203(99)00135-1
  8. Awad M., Chehdi K., Nasri A. Multicomponent image segmentation using a genetic algorithm and artificial neural network // IEEE Geoscience and Remote Sensing Letters. 2007. Vol. 4. No. 4. Pp. 571–575. DOI: 10.1109/LGRS.2007.903064
  9. Zhou Z., Wei S., Zhang X., Zhao X. Remote sensing image segmentation based on selforganizing map at multiple-scale // Proc. of the Society of Photo-Optical Instrumentation Engineers (SPIE). 2007. Vol 6752. Pp. 122-126. DOI: 10.1117/12.760420
  10. Kurnaz M.N., Dokur Z., Olmez T. Segmentation of remote-sensing images by incremental neural network // Pattern Recognition Letters. 2005. Vol. 26. No. 8. Pp. 1096–1104. DOI: 10.1016/j.patrec.2004.10.004
  11. Белим С.В., Кутлунин П.Е. Выделение контуров на изображениях с помощью алгоритма кластеризации // Компьютерная оптика. 2015. Т. 39. No. 1. С. 119–124. DOI: 10.18287/0134-2452-2015-39-1-119-124 (the paper at Socionet)
  12. Белим С.В., Ларионов С.Б. Алгоритм сегментации изображений, основанный на поиске сообществ на графах // Компьютерная оптика. 2016. Т. 40. No 6. С. 904-910. DOI: 10.18287/2412-6179-2016-40-6-904-910 (the paper at Socionet)