The 24 linked references in paper L. Postnikova B., S. Soodaeva K., I. Klimanov A., N. Kubysheva I., K. Afinogenov I., M. Glukhova V., L. Nikitina Yu., Л. Постникова Б., С. Соодаева К., И. Климанов А., Н. Кубышева И., К. Афиногенов И., М. Глухова В., Л. Никитина Ю. (2017) “Оксидативный стресс, индуцированный антибактериальными препаратами, и антибиотикорезистентность бактерий // Antibiotic-induced oxidative stress and antibiotic resistance” / spz:neicon:pulmonology:y:2017:i:5:p:664-671

  1. Walsh C. Where will new antibiotics come from? Nat. Rev. Microbiol.2003; 1 (1): 65–70. DOI: 10.1038/nrmicro727.
  2. Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev.2010; 74 (3): 417–433. DOI: 10.1128/MMBR.00016-10.
  3. Wright G.D. The antibiotic resistome: the nexus of chemical and genetic diversity.Nat. Rev. Microbiol. 2007; 5 (3): 175–186. DOI: 10.1038/nrmicro1614.
  4. Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell.2007; 128 (6): 1037–1050. DOI: 10.1016/j.cell.2007.03.004.
  5. Kohanski M.A., Dwyer D.J., Hayete B. et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130 (5): 797-810. DOI: 10.1016/j.cell. 2007.06.049.
  6. Kohanski M.A., Dwyer D.J., Wierzbowski J. et al. Mistranslation of membrane proteins and two-component system activation trigger aminoglycoside-mediated oxidative stress and cell death. Cell. 2008; 135 (4): 679–690. DOI: 10.1016/j.cell.2008.09.038.
  7. Yeom J., Imlay J.A., Park W. Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J. Biol. Chem.2010; 285 (29): 22689–22695. DOI: 10.1074/ jbc.M110.127456.
  8. Dwyer D.J., Kohanski M.A., Collins J.J. Role of reactive oxygen species in antibiotic action and resistance. Curr. 3Ахова А.В. Роль полиаминов в адаптации Escherichia coliк сублетальному действию антибиотиков: Дисс. ... канд. биол. наук. Пермь; 2011. Таблица 2 Мeханизмы антиоксидантного ответа бактериальной клетки на оксидативный стресс под влиянием антибактериальных препаратов [10] Table 2 Mechanisms of bacterial antioxidant response to antibioticQinduced oxidative stress [10] АнтиоксидантМикроорганизмАнтибактериальный Механизмы антиоксидантной препаратзащиты бактерий Антиоксидантные ферментыSalmonella e
  9. Marrakchi M., Liu X., Andreescu S. Oxidative stress and antibiotic resistance in bacterial pathogens: state of the art, methodologies, and future trends. Adv. Exp. Med. Biol. 2014; 806: 483–498. DOI: 10.1007/978-3-319-06068-2_23.
  10. Dwyer D.J., Belenky P.A., Yang J.H. et al. Antibiotics induce redox-related physiological alterations as part of their lethality.Proc. Natl. Acad. Sci. USA. 2014; 111 (20): 2100–2109. DOI: 10.1073/pnas.1401876111.
  11. Murphy M.P., Holmgren A., Larsson N.G. et al. Unraveling the biological roles of reactive oxygen species.Cell Metab. 2011; 13 (4): 361–366. DOI: 10.1016/j.cmet.2011.03.010.
  12. Albesa I., Becerra M.C., Battán P.C., Páez P.L. Oxidative stress involved in the antibacterial action of different antibiotics.Biochem. Biophys. Res. Commun. 2004; 317 (2): 605– 609. DOI: 10.1016/j.bbrc.2004.03.085.
  13. Grant S.S., Kaufmann B.B., Chand N.S. et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA. 2012; 109 (30): 12147– 12152. DOI: 10.1073/pnas.1203735109.
  14. Goswami M., Mangoli S.H., Jawali N. Involvement of reactive oxygen species in the action of ciprofl oxacin against Escherichia coli. Antimicrob. Agents Chemother.2006; 50 (3): 949–954. DOI: 10.1128/AAC.50.3.949-954.2006.
  15. Нестерова Л.Ю., Ахова А.В., Шумков М.С., Ткаченко А.Г. ДНК-протекторное действие полиаминов как фактор резистентности Escherichia coli к левофлоксацину.Вестник Пермского университета(сер. Биология). 2016; 1: 54–59.
  16. Dwyer D.J., Kohanski M.A., Hayete B., Collins J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli.Mol. Syst. Biol.2007; 3 (1): 91. DOI: 10.1038/msb4100135.
  17. Arruda Grossklaus D., Bailão A.M., Vieira Rezende T.C. et al. Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis. Microbes Infect. 2013; 15 (5): 347–364. DOI: 10.1016/j.micinf.2012. 12.002.
  18. Dosselli R., Millioni R., Puricelli L. et al. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach.J. Proteomics. 2012; 77: 329–343. DOI: 10.1016/j.jprot.2012.09.007.
  19. Huang C.H., Chiou S.H. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide.Kaohsiung J. Med. Sci.2011; 27 (12): 544–553. DOI: 10.1016/j.kjms.2011.06.019.
  20. Deng X., Weerapana E., Ulanovskaya O. et al. Proteomewide quantification and characterization of oxidation-sensitive сysteines in pathogenic bacteria. Cell Host Microbe. 2013; 13 (3): 358–370. DOI: 10.1016/j.chom.2013.02.004.
  21. Kalyanaraman B., Darley-Usmar V., Davies K.J. et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations.Free Radic. Biol. Med.2012; 52 (1): 1–6. DOI: 10.1016/j.freeradbiomed. 2011.09.030.
  22. Acker H., Gielis J., Acke M. et al. The Role of reactive oxygen species in antibiotic-induced cell death in Burkholderia cepacia complex bacteria. PLoS One.2016; 11 (7): e0159837. DOI: 10.1371/journal.pone.0159837.
  23. Holden J.K., Li H., Jing Q. et al. Structural and biological studies on bacterial nitric oxide synthase inhibitors. Proc. Natl. Acad. Sci. USA. 2013; 110 (45): 18127–18131. DOI: 10.1073/pnas.1314080110.
  24. Liu J.H., Wang W., Wu H. et al. Polyamines function in stress tolerance: from synthesis to regulation.Front. Plant. Sci.2015; 6: 827. DOI: 10.3389/fpls.2015.00827. Поступила 21.03.17