The 32 linked references in paper S. Soodaeva K., I. Klimanov A., L. Nikitina Yu., С. Соодаева К., И. Климанов А., Л. Никитина Ю. (2017) “Нитрозивный и оксидативный стресс при заболеваниях органов дыхания // Nitrosative and oxidative stresses in respiratory diseases” / spz:neicon:pulmonology:y:2017:i:2:p:262-273

  1. Ricciardolo F.L.M., Caramori G., Ito K. et al. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease.J. Allergy Clin. Immunol.2005; 116 (5): 1028–1035. DOI: 10.1016/j.jaci.2005.06.034.
  2. Соодаева С.К. Свободнорадикальные механизмы повреждения при болезнях органов дыхания. Пульмонология. 2012; (1): 5–10.
  3. Sugiura H., Ichinose M. Nitrative stress in inflammatory lung diseases. Nitric Oxide.2011; 25 (2): 138–144. DOI: 10.1016/j.niox.2011.03.079.
  4. Dozor A.J. The role of oxidative stress in the pathogenesis and treatment of asthma. Ann. New York Academy of Sciences.2010; 1203: 133–137. DOI: 10.1111/j.17496632.2010.05562.x.
  5. Kirkham P.A., Barnes P.J. Oxidative stress in COPD. Chest. 2013; 144 (1): 266–273. DOI: 10.1378/chest.12-2664.
  6. Соодаева С.К., Климанов И.А. Нарушения окислительного метаболизма при заболеваниях респираторного тракта и современные подходы к антиоксидантной терапии. Практическая пульмонология.2009; (1): 34–38.
  7. Соодаева С.К., Никитина Л.Ю., Климанов И.А. Механизмы развития оксидативного стресса под воздействием аэрополлютантов окружающей среды: потенциал средств антиоксидантной защиты. Пульмонология. 2015; 25 (6): 736–742. DOI: 10.18093/0869-0189-201525-6-736-742. (the paper at Socionet)
  8. Berend N. Contribution of air pollution to COPD and small airway dysfunction. Respirology. 2016; 21 (2): 237–244. DOI: 10.1111/resp.12644.
  9. BiaBas A.J., Sitarek P.B., Mibkowska-Dymanowska J. et al. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid. Med. Cell. Long. 2016; 2016: 1–15. DOI: 10.1155/2016/7808576.
  10. Соодаева С.К., Климанов И.А., Никитина Л.Ю. Особенности цикла оксида азота при респираторных заболеваниях. Пульмонология. 2016; 26 (6): 753–759. DOI: 10.18093/0869-0189-2016-26-6-753-759. (the paper at Socionet)
  11. Ricciardolo F.L.M., Sterk P.J., Gaston B., Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev.2004; 84 (3): 731–765. DOI: 10.1152/physrev.00034.2003.
  12. Hanazawa T., Kharitonov S., Barnes P.J. Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am. J. Respir. Crit. Care Med. 2000; 162 (4): 1273–1276. DOI: 10.1164/ajrccm.162.4.9912064.
  13. Corradi M., Montuschi P., Donnelly L.E. et al. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am. J. Respir. Crit. Care Med.2001; 163 (4): 854–858. DOI: 10.1164/ajrccm.163.4.2001108.
  14. Malerba M., Radaeli A., Olivini A. et al. Exhaled nitric oxide as a biomarker in COPD and related comorbidities. Biomed. Res. Int.2014; 2014: 271918. DOI: 10.1155/2014/ 271918.
  15. McCafferty J.B., Bradshaw T.A., Tate S. et al. Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentration. Thorax. 2004; 59: 694–698. DOI: 10.1136/thx.2003. 016949.
  16. Horvath I., Donnely L., Kiss A., Kharitonov S. Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med.1998; 158 (4): 1042–1046. DOI: 10.1164/ajrccm.158.4.9710091.
  17. Ferreira I.M., Mehdi S. Hazari R.I. et al. Exhaled Nitric Oxide and hydrogen peroxide in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.2001; 164 (6): 1012–1101. DOI: 10.1164/ajrccm.164.6.2012139.
  18. Loukides S., Horvath I., Wodehouse T. et al. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am. J. Respir. Crit. Care Med.1998; 158 (3): 991–914. DOI: 10.1164/ajrccm.158.3.9710031.
  19. Новоселов В.И. Роль пероксиредоксинов при окислительном стрессе в органах дыхания. Пульмонология. 2012; (1): 83–87.
  20. Fridovich I. Superoxide radical and superoxide dismutases. Ann. Rev. Biochem.1995; 64: 97–112. DOI: 10.1146/ annurev.bi.64.070195.000525.
  21. Hart P.J., Balbirnie M.M., Ogihara N.L. et al. A structurebased mechanism for copper-zinc superoxide dismutase. Biochemistry. 1999; 38 (7): 2167–2178. DOI: 10.1021/ bi982284u.
  22. Borgstahl G.E., Parge H.E., Hickey M.J. et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992; 71 (1): 107–118. DOI: 10.1016/00928674(92)90270-M.
  23. Chelikani P., Fita I., Loewen P.C. Diversity of structures and properties among catalases.Cell. Mol. Life Sci.2004; 61 (2): 192–208. DOI: 10.1007/s00018-003-3206-5.
  24. Deponte M., Urig S., Arscott L.D. et al. Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J. Biol. Chem.2005; 280: 20628–20637. DOI: 10.1074/jbc.M412519200.
  25. Traber M.G., Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med.2007; 43 (1): 4–15. DOI: 10.1016/j.freeradbiomed.2007.03.024.
  26. Amini A., Masoumi-Moghaddam S., Ehteda A., Morris D.L. Bromelain and N-acetylcysteine inhibit proliferation and survival of gastrointestinal cancer cells in vitro: significance of combination therapy.J. Exp. Clin. Cancer. Res. 2014; 33 (1): 92. DOI: 10.1186/s13046-014-0092-7.
  27. Gurbuz A.K., Ozel A.M., Ozturk R. et al. Effect of N-acetyl cysteine on Helicobacter pylori.South. Med. J.2005; 98 (Suppl. 11): 1095–1097. DOI: 10.1097/01.smj.0000182486. 39913.da.
  28. Feldman L., Efrati S., Eviatar E. et al. Gentamicin-induced ototoxicity in hemodialysis patients is ameliorated by N-acetylcysteine. Kidney Int.2007; 72 (3): 359–363. DOI: 10.1038/sj.ki.5002295.
  29. Zhou J., Wang M., Sun Y. et al. Nitrate Increased Cucumber Tolerance to Fusarium Wilt by Regulating Fungal Toxin production and distribution. Toxins(Basel.). 2017; 9 (3): pii: E100. DOI: 10.3390/toxins9030100.
  30. Tse H.N., Tseng C.Z.S. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis.2014; 9 (1): 825–836. DOI: 10.2147/COPD.S51057.
  31. Santus P., Corsico A., Solidoro P. et al. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD. 2014; 11 (6): 705–717. DOI: 10.3109/15412555.2014.898040.
  32. Stav D., Raz M. Effect of N-acetylcysteine on air trapping in COPD: a randomized placebo-controlled study. Chest. 2009; 136 (2): 381–386. DOI: 10.1378/chest.09-0421.