The 64 references in paper A. Kadushkin G., A. Taganovich D., А. Кадушкин Г., А. Таганович Д. (2017) “Молекулярные механизмы формирования стероидорезистентности у пациентов с хронической обструктивной болезнью легких // Molecular mechanisms of corticosteroid resistance in patients with chronic obstructive pulmonary disease” / spz:neicon:pulmonology:y:2016:i:6:p:736-747

1
Boorsma M., Lutter R., van de Pol M.A. et al. Long-term effects of budesonide on inflammatory status in COPD. COPD. 2008; 5 (2): 97–104.
(check this in PDF content)
2
Barnes P.J. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol.2013; 131 (3): 636–645.
(check this in PDF content)
3
Babu K.S., Kastelik J.A., Morjaria J.B. Inhaled corticosteroids in chronic obstructive pulmonary disease: a pro–con perspective.Br. J. Clin. Pharmacol. 2014; 78 (2): 282–300.
(check this in PDF content)
4
Suissa S., Barnes P.J. Inhaled corticosteroids in COPD: the case against.Eur. Respir. J.2009; 34 (1): 13–16.
(check this in PDF content)
5
Higham A., Booth G., Lea S. et al. The effects of corticosteroids on COPD lung macrophages: a pooled analysis. Respir. Res. 2015; 16 (1): 98.
(check this in PDF content)
6
Milara J., Lluch J., Almudever P. et al. Roflumilast N-oxide reverses corticosteroid resistance in neutrophils from patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol.2014; 134 (2): 314–322.
(check this in PDF content)
7
Bosscher K., Vanden Berghe W., Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 2003; 24 (4): 488–522.
(check this in PDF content)
8
Bosscher K., Haegeman G. Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol. Endocrinol. 2009; 23 (3): 281–291.
(check this in PDF content)
9
Velden V.H. Glucocorticoids: mechanisms of action and anti-inflammatory potential in asthma. Mediators Inflamm.1998; 7 (4): 229–237.
(check this in PDF content)
10
Maneechotesuwan K., Yao X., Ito K. et al. Suppression of GATA-3 nuclear import and phosphorylation: a novel mechanism of corticosteroid action in allergic disease. PLoS Med.2009; 6 (5): e1000076.
(check this in PDF content)
11
Dostert A., Heinzel T. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Curr. Pharm. Des.2004; 10 (23): 2807–2816.
(check this in PDF content)
12
Clark A.R. Anti-inflammatory functions of glucocorticoidinduced genes. Mol. Cell Endocrinol.2007; 275 (1–2): 79–97.
(check this in PDF content)
13
Ayroldi E., Riccardi C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action.FASEB J.2009; 23 (11): 3649–3658.
(check this in PDF content)
14
Smoak K., Cidlowski J.A. Glucocorticoids regulate tristetraprolin synthesis and posttranscriptionally regulate tumor necrosis factor alpha inflammatory signaling. Mol. Cell Biol. 2006; 26 (23): 9126–9135.
(check this in PDF content)
15
Barnes P.J. Alveolar macrophages as orchestrators of COPD. COPD. 2004; 1 (1): 59–70.
(check this in PDF content)
16
Luger K., Mäder A.W., Richmond R.K. et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389 (6648): 251–260.
(check this in PDF content)
17
Ito K., Barnes P.J., Adcock I.M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1δinduced histone H4 acetylation on lysines 8 and 12.Mol. Cell Biol.2000; 20 (18): 6891–6903.
(check this in PDF content)
18
Hoesel B., Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer. 2013; 12: 86.
(check this in PDF content)
19
Gilmore T.D. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006; 25 (51): 6680–6684.
(check this in PDF content)
20
Bosscher K., Vanden Berghe W., Vermeulen L. et al. Glucocorticoids repress NF-κB-driven genes by disturbing the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the cell. Proc. Natl. Acad. Sci. USA. 2000; 97 (8): 3919–3924.
(check this in PDF content)
21
Auphan N., DiDonato J.A., Rosette C. et al. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995; 270 (5234): 286–290.
(check this in PDF content)
22
Johnson G.L., Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002; 298 (5600): 1911–1912.
(check this in PDF content)
23
Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem.1995; 270 (28): 16483–16486.
(check this in PDF content)
24
Caelles C., Gonzalez-Sancho J.M., Munoz A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway.Genes Dev. 1997; 11: 3351–3364.
(check this in PDF content)
25
Maneechotesuwan K., Xin Y., Ito K. et al. Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J. Immunol. 2007; 178 (4): 2491–2498.
(check this in PDF content)
26
Cuenda A., Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim. Biophys. Acta.2007; 1773 (8): 1358–1375.
(check this in PDF content)
27
Roskoski R.J. ERK1/2 MAP kinases: structure, function, and regulation.Pharmacol. Res.2012; 66 (2): 105–143.
(check this in PDF content)
28
Abraham S.M., Lawrence T., Kleiman A. et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med.2006; 203 (8): 1883–1889.
(check this in PDF content)
29
Lemire B.B. DebigaréR., DubéA. et al. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J. Appl. Physiol.2012; 113 (1): 159–166.
(check this in PDF content)
30
Armstrong J., Harbron C., Lea S. et al. Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease. J. Pharmacol. Exp. Ther.2011; 338 (3): 732–740.
(check this in PDF content)
31
Singh D., Smyth L., Borrill Z. et al. A randomized, placebo-controlled study of the effects of the p38 MAPK inhibitor SB-681323 on blood biomarkers of inflammation in COPD patients.J. Clin. Pharmacol.2010; 50 (1): 94–100.
(check this in PDF content)
32
Mercado N., Hakim A., Kobayashi Y. et al. Restoration of corticosteroid sensitivity by p38 mitogen activated protein kinase inhibition in peripheral blood mononuclear cells from severe asthma.PLoS One.2012; 7 (7): e41582.
(check this in PDF content)
33
Itoh M., Adachi M., Yasui H. et al. Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol. Endocrinol.2002; 16 (10): 2382–2392.
(check this in PDF content)
34
Li L.B., Goleva E., Hall C.F. et al. Superantigen-induced corticosteroid resistance of human T cells occurs through activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK-ERK) pathway. J. Allergy Clin. Immunol.2004; 114 (5): 1059–1069.
(check this in PDF content)
35
Kobayashi Y., Mercado N., Barnes P.J., Ito K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS One. 2011; 6 (12): e27627.
(check this in PDF content)
36
Wallace A.M., Hardigan A., Geraghty P. et al. Protein phosphatase 2A regulates innate immune and proteolytic responses to cigarette smoke exposure in the lung. Toxicol. Sci.2012; 126 (2): 589–599.
(check this in PDF content)
37
Kobayashi Y., Wada H., Rossios C. et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br. J. Pharmacol.2013; 169 (5): 1024–1034.
(check this in PDF content)
38
Galigniana M.D., Piwien-Pilipuk G., Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide.Mol. Pharmacol.1999; 55 (2): 317–323.
(check this in PDF content)
39
Maestrelli P., Páska C., Saetta M. et al. Decreased haem oxygenase-1 and increased inducible nitric oxide synthase in the lung of severe COPD patients. Eur. Respir. J.2003; 21 (6): 971–976.
(check this in PDF content)
40
Wallace A.D., Cidlowski J.A. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J. Biol. Chem.2001; 276 (46): 42714–42721.
(check this in PDF content)
41
Flaster H., Bernhagen J., Calandra T., Bucala R. The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol. Endocrinol.2007; 21 (6): 1267–1280.
(check this in PDF content)
42
Bhavsar P., Hew M., Khorasani N. et al. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax. 2008; 63 (9): 784–790.
(check this in PDF content)
43
Aeberli D., Yang Y., Mansell A. et al. Endogenous macrophage migration inhibitory factor modulates glucocorticoid sensitivity in macrophages via effects on MAP kinase phosphatase-1 and p38 MAP kinase. FEBS Lett. 2006; 580 (3): 974–981.
(check this in PDF content)
44
Oakley R.H., Jewell C.M., Yudt M.R. et al. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem.1999; 274 (39): 27857–27866.
(check this in PDF content)
45
Goleva E., Li L.B., Eves P.T. et al. Increased glucocorticoid receptor beta alters steroid response in glucocorticoidinsensitive asthma. Am. J. Respir. Crit. Care Med.2006; 173 (6): 607–616.
(check this in PDF content)
46
Charmandari E., Chrousos G.P., Ichijo T. et al. The human glucocorticoid receptor (hGR) βisoform suppresses the transcriptional activity of hGRαby interfering with formation of active coactivator complexes. Mol. Endocrinol. 2005; 19 (1): 52–64.
(check this in PDF content)
47
Li L.B., Leung D.Y., Martin R.J., Goleva E. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor beta in steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 2010; 182 (7): 877–883.
(check this in PDF content)
48
Ito K., Ito M., Elliott W.M. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. New Engl. J. Med. 2005; 352 (19): 1967–1976.
(check this in PDF content)
49
Ito K., Yamamura S., Essilfie-Quaye S. et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression.J. Exp. Med.2006; 203 (1): 7–13.
(check this in PDF content)
50
Cosio B.G., Tsaprouni L., Ito K. et al. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages.J. Exp. Med. 2004; 200 (5): 689–695.
(check this in PDF content)
51
Barnes P.J. Reduced histone deacetylase in COPD: clinical implications. Chest. 2006; 129 (1): 151–155.
(check this in PDF content)
52
Osoata G.O., Hanazawa T., Brindicci C. et al. Peroxynitrite elevation in exhaled breath condensate of COPD and its inhibition by fudosteine. Chest. 2009; 135 (6): 1513–1520.
(check this in PDF content)
53
Osoata G., Yamamura S., Ito M. et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem. Biophys. Res. Commun.2009; 384 (3): 366–371.
(check this in PDF content)
54
To Y., Ito K., Kizawa Y. et al. Targeting phosphoinositide-3kinase-δwith theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.2010; 182 (7): 897–904.
(check this in PDF content)
55
Ngkelo A., Hoffmann R.F., Durham A.L. et al. Glycogen synthase kinase-3βmodulation of glucocorticoid responsiveness in COPD. Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 309 (10): L1112–L1123.
(check this in PDF content)
56
Ford P.A., Durham A.L., Russell R.E. et al. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest. 2010; 137 (6): 1338–1344.
(check this in PDF content)
57
Mercado N., To Y., Ito K., Barnes P.J. Nortriptyline reverses corticosteroid insensitivity by inhibition of PI3K-δ. J. Pharmacol. Exp. Ther. 2011; 337 (2): 465–470.
(check this in PDF content)
58
Meja K.K., Rajendrasozhan S., Adenuga D. et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2.Am. J. Respir. Cell Mol. Biol. 2008; 39 (3): 312–323.
(check this in PDF content)
59
Nannini L.J., Poole P., Milan S.J., Kesterton A. Combined corticosteroid and long-acting beta2-agonist in one inhaler versus inhaled corticosteroids alone for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev.2013; 8: CD006826.
(check this in PDF content)
60
Usmani O.S., Ito K., Maneechotesuwan K. et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am. J. Respir. Crit. Care Med. 2005; 172 (6): 704–712.
(check this in PDF content)
61
Kobayashi Y., Mercado N., Miller-Larsson A. et al. Increased corticosteroid sensitivity by a long acting β2agonist formoterol via β2adrenoceptor independent protein Кадушкин А.Г., Таганович А.Д. Молекулярные механизмы формирования стероидорезистентности у пациентов с ХОБЛ phosphatase 2A activation. Pulm. Pharmacol. Ther.2012; 25 (3): 201–207.
(check this in PDF content)
62
Rossios C., To Y., Osoata G. et al. Corticosteroid insensitivity is reversed by formoterol via phosphoinositide-3-kinase inhibition.Br. J. Pharmacol. 2012; 167 (4): 775–786.
(check this in PDF content)
63
Авдеев С.Н. Новые возможности противовоспалительной терапии хронической обструктивной болезни легких. Пульмонология. 2013; 4: 95–101. / Avdeev S.N. New perspectives of anti-inflammatory therapy of chronic obstructive pulmonary disease. Pul'monologiya. 2013; 4: 95–101 (in Russian).
(check this in PDF content)
64
Milara J., Morell A., Ballester B. et al. Roflumilast improves corticosteroid resistance COPD bronchial epithelial cells stimulated with toll like receptor 3 agonist. Respir. Res. 2015; 16: 12. Поступила 12.04.16 Received April 12, 2016
(check this in PDF content)