The thirty-eight linked references in paper G. Bondarenko G., V. Kristya I., D. Savichkin O., P. Żukowski, Г. Бондаренко Г., В. Кристя И., Д. Савичкин О., П. Жуковский (2018) “Моделирование распыления поверхности катода ионами и быстрыми атомами в таунсендовском разряде в смеси аргон-ртуть с зависящим от температуры составом // Simulation of cathode surface sputtering by ions and fast atoms in Townsend discharge in argon-mercury mixture with temperature-dependent composition” / spz:neicon:pimi:y:2018:i:3:p:227-233

  1. Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., Whitehead J.C., Murphy A.B., Gutsol A.F., Starikovskaia S., Kortshagen U., Boeuf J.-P., Sommerer T.J., Kushner M.J., Czarnetzki U., Mason N. The 2012 plasma roadmap. J. Phys. D: Appl. Phys., 2012, vol. 45, no. 25, pp. 253001. doi: 10.1088/0022-3727/45/25/253001
  2. Schwieger J., Baumann B., Wolff M., Manders F., Suijker J. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps. J. Phys.: Conf. Ser., 2015, vol. 655, pp. 012045. doi: 10.1088/1742-6596/655/1/012045
  3. Hadrath S., Beck M., Garner R.C., Lieder G., Ehlbeck J. Determination of absolute Ba densities during dimming operation of fluorescent lamps by laser-induced fluorescence measurements. J. Phys. D: Appl. Phys., 2007, vol. 40, no. 1, pp. 163–167. doi: 10.1088/0022-3727/40/1/009
  4. Kristya V.I., Fisher M.R. Monte Carlo simulation of gas ionization in the interelectrode gap of a lowcurrent discharge in an argon-mercury mixture. Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 2, pp. 277–280. doi: 10.3103/S106287381002036X
  5. Sobota A., van den Bos R.A.J.M., Kroesen G., Manders F. Transition between breakdown regimes in a temperature-dependent mixture of argon and mercury using 100 kHz excitation. J. Appl. Phys., 2013, vol. 113, no. 4, pp. 043308. doi: 10.1063/1.4789598
  6. Bondarenko G.G., Fisher M.R., Kristya V.I. Modeling of the effect of temperature and field-induced electron emission from the cathode with a thin insulating film on the Townsend discharge ignition voltage in argon-mercury mixture. Vacuum, 2016, vol. 129, pp. 188–191. doi: 10.1016/j.vacuum.2016.01.008
  7. Bogaerts A. Comprehensive modelling network for dc glow discharges in argon. Plasma Sources Sci. Technol., 1999, vol. 8, no. 2, pp. 210–229. doi: 10.1088/0963-0252/8/2/003
  8. Hagelaar G.J.M., Kroesen G.M.W., Klein M.H. Energy distribution of ions and fast neutrals in microdischarges for display technology. J. Appl. Phys., 2000, vol. 88, no. 5, pp. 2240–2245. doi: 10.1063/1.1287758
  9. Capdeville H., Pedoussat C., Pitchford L.C. Ion and neutral energy flux distributions to the cathode in glow discharges in Ar/Ne and Xe/Ne mixtures. J. Appl. Phys., 2002, vol. 91, no. 3, pp. 1026–1030. doi: 10.1063/1.1430891
  10. Liu C., Wang D. Monte Carlo simulation of ions inside a cylindrical bore for plasma source ion implantation. J. Appl. Phys., 2002, vol. 91, no. 1, pp. 32– 35. doi: 10.1063/1.1421239
  11. Yoon S.J., Lee I. Theory of the lifetime of the MgO protecting layer in ac plasma display panels. J. Appl. Phys., 2002, vol. 91, no. 4, pp. 2487–2492. doi: 10.1063/1.1433928
  12. Ito T., Cappelli M.A. Ion energy distribution and gas heating in the cathode fall of a direct-current microdischarge. Phys. Rev. E, 2006, vol. 73, no. 4, pp. 046401. doi: 10.1103/PhysRevE.73.046401
  13. Ito T., Cappelli M.A. On the production of energetic neutrals in the cathode sheath of direct-current discharges. Appl. Phys. Lett., 2007, vol. 90, no. 10, pp. 101503. doi: 10.1063/1.2711416
  14. Wang H., Sukhomlinov V.S., Kaganovich I.D., Mustafaev A.S. Simulations of ion velocity distribution functions taking into account both elastic and charge exchange collisions. Plasma Sources Sci. Technol., 2017, vol. 26, no. 2, pp. 024001. doi: 10.1088/1361-6595/26/2/024001
  15. Sukhomlinov V.S., Mustafaev A.S., Murillo O. Ion energy distribution function in the wall layer at a negative wall potential with respect to the plasma. Phys. Plasmas, 2018, vol. 25, no. 1, pp. 013513. doi: 10.1063/1.5017309
  16. Kristya V.I., Savichkin D.O., Fisher M.R. Modeling of cathode sputtering in a low-current gas discharge in a mixture of argon with mercury vapor. J. Surf. Investig., 2016, vol. 10, no. 2, рp. 441–444. doi: 10.1134/S1027451016020300
  17. Bondarenko G.G., Fisher M. R., Kristya V.I. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture. J. Phys.: Conf. Ser., 2012, vol. 406, pp. 012031. doi: 10.1088/1742-6596/406/1/012031
  18. Bondarenko G.G., Fisher M.R., Kristya V.I. Influence of temperature on the ionization coefficient and Приборы и методы измерений 2018. – Т. 9, No 3. – С. 227–233 Bondarenko G.G. et al. ignition voltage of the Townsend discharge in an argon– mercury vapor mixture. Technical Physics, 2017, vol. 6, no. 2, pp. 223–229. doi: 10.1134/S1063784217020050
  19. Phelps A.V. The application of scattering cross sections to ion flux models in discharge sheaths. J. Appl. Phys., 1994, vol. 76, no. 2, pp. 747–753. doi: 10.1063/1.357820