The 40 references in paper G. Bondarenko G., V. Kristya I., D. Savichkin O., P. Żukowski, Г. Бондаренко Г., В. Кристя И., Д. Савичкин О., П. Жуковский (2018) “Моделирование распыления поверхности катода ионами и быстрыми атомами в таунсендовском разряде в смеси аргон-ртуть с зависящим от температуры составом // Simulation of cathode surface sputtering by ions and fast atoms in Townsend discharge in argon-mercury mixture with temperature-dependent composition” / spz:neicon:pimi:y:2018:i:3:p:227-233

1
Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., Whitehead J.C., Murphy A.B., Gutsol A.F., Starikovskaia S., Kortshagen U., Boeuf J.-P., Sommerer T.J., Kushner M.J., Czarnetzki U., Mason N. The 2012 plasma roadmap. J. Phys. D: Appl. Phys., 2012, vol. 45, no. 25, pp. 253001. doi: 10.1088/0022-3727/45/25/253001
(check this in PDF content)
2
Schwieger J., Baumann B., Wolff M., Manders F., Suijker J. Backcoupling of acoustic streaming on the temperature field inside high-intensity discharge lamps. J. Phys.: Conf. Ser., 2015, vol. 655, pp. 012045. doi: 10.1088/1742-6596/655/1/012045
(check this in PDF content)
3
Hadrath S., Beck M., Garner R.C., Lieder G., Ehlbeck J. Determination of absolute Ba densities during dimming operation of fluorescent lamps by laser-induced fluorescence measurements. J. Phys. D: Appl. Phys., 2007, vol. 40, no. 1, pp. 163–167. doi: 10.1088/0022-3727/40/1/009
(check this in PDF content)
4
Kristya V.I., Fisher M.R. Monte Carlo simulation of gas ionization in the interelectrode gap of a lowcurrent discharge in an argon-mercury mixture. Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 2, pp. 277–280. doi: 10.3103/S106287381002036X
(check this in PDF content)
5
Sobota A., van den Bos R.A.J.M., Kroesen G., Manders F. Transition between breakdown regimes in a temperature-dependent mixture of argon and mercury using 100 kHz excitation. J. Appl. Phys., 2013, vol. 113, no. 4, pp. 043308. doi: 10.1063/1.4789598
(check this in PDF content)
6
Bondarenko G.G., Fisher M.R., Kristya V.I. Modeling of the effect of temperature and field-induced electron emission from the cathode with a thin insulating film on the Townsend discharge ignition voltage in argon-mercury mixture. Vacuum, 2016, vol. 129, pp. 188–191. doi: 10.1016/j.vacuum.2016.01.008
(check this in PDF content)
7
Bogaerts A. Comprehensive modelling network for dc glow discharges in argon. Plasma Sources Sci. Technol., 1999, vol. 8, no. 2, pp. 210–229. doi: 10.1088/0963-0252/8/2/003
(check this in PDF content)
8
Hagelaar G.J.M., Kroesen G.M.W., Klein M.H. Energy distribution of ions and fast neutrals in microdischarges for display technology. J. Appl. Phys., 2000, vol. 88, no. 5, pp. 2240–2245. doi: 10.1063/1.1287758
(check this in PDF content)
9
Capdeville H., Pedoussat C., Pitchford L.C. Ion and neutral energy flux distributions to the cathode in glow discharges in Ar/Ne and Xe/Ne mixtures. J. Appl. Phys., 2002, vol. 91, no. 3, pp. 1026–1030. doi: 10.1063/1.1430891
(check this in PDF content)
10
Liu C., Wang D. Monte Carlo simulation of ions inside a cylindrical bore for plasma source ion implantation. J. Appl. Phys., 2002, vol. 91, no. 1, pp. 32– 35. doi: 10.1063/1.1421239
(check this in PDF content)
11
Yoon S.J., Lee I. Theory of the lifetime of the MgO protecting layer in ac plasma display panels. J. Appl. Phys., 2002, vol. 91, no. 4, pp. 2487–2492. doi: 10.1063/1.1433928
(check this in PDF content)
12
Ito T., Cappelli M.A. Ion energy distribution and gas heating in the cathode fall of a direct-current microdischarge. Phys. Rev. E, 2006, vol. 73, no. 4, pp. 046401. doi: 10.1103/PhysRevE.73.046401
(check this in PDF content)
13
Ito T., Cappelli M.A. On the production of energetic neutrals in the cathode sheath of direct-current discharges. Appl. Phys. Lett., 2007, vol. 90, no. 10, pp. 101503. doi: 10.1063/1.2711416
(check this in PDF content)
14
Wang H., Sukhomlinov V.S., Kaganovich I.D., Mustafaev A.S. Simulations of ion velocity distribution functions taking into account both elastic and charge exchange collisions. Plasma Sources Sci. Technol., 2017, vol. 26, no. 2, pp. 024001. doi: 10.1088/1361-6595/26/2/024001
(check this in PDF content)
15
Sukhomlinov V.S., Mustafaev A.S., Murillo O. Ion energy distribution function in the wall layer at a negative wall potential with respect to the plasma. Phys. Plasmas, 2018, vol. 25, no. 1, pp. 013513. doi: 10.1063/1.5017309
(check this in PDF content)
16
Kristya V.I., Savichkin D.O., Fisher M.R. Modeling of cathode sputtering in a low-current gas discharge in a mixture of argon with mercury vapor. J. Surf. Investig., 2016, vol. 10, no. 2, рp. 441–444. doi: 10.1134/S1027451016020300
(check this in PDF content)
17
Bondarenko G.G., Fisher M. R., Kristya V.I. Simulation of charged and excited particle transport in the low-current discharge in argon-mercury mixture. J. Phys.: Conf. Ser., 2012, vol. 406, pp. 012031. doi: 10.1088/1742-6596/406/1/012031
(check this in PDF content)
18
Bondarenko G.G., Fisher M.R., Kristya V.I. Influence of temperature on the ionization coefficient and Приборы и методы измерений 2018. – Т. 9, No 3. – С. 227–233 Bondarenko G.G. et al. ignition voltage of the Townsend discharge in an argon– mercury vapor mixture. Technical Physics, 2017, vol. 6, no. 2, pp. 223–229. doi: 10.1134/S1063784217020050
(check this in PDF content)
19
Phelps A.V. The application of scattering cross sections to ion flux models in discharge sheaths. J. Appl. Phys., 1994, vol. 76, no. 2, pp. 747–753. doi: 10.1063/1.357820
(check this in PDF content)
20
Andersen H.H., Bay H.L. Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids, ed. R. Behrisch. Berlin–Heidelberg, Springer, 1981, p. 145. 233
(check this in PDF content)
1

(check this in PDF content)
2

(check this in PDF content)
3

(check this in PDF content)
4

(check this in PDF content)
5

(check this in PDF content)
6

(check this in PDF content)
7

(check this in PDF content)
8

(check this in PDF content)
9

(check this in PDF content)
10

(check this in PDF content)
11

(check this in PDF content)
12

(check this in PDF content)
13

(check this in PDF content)
14

(check this in PDF content)
15

(check this in PDF content)
16

(check this in PDF content)
17

(check this in PDF content)
18

(check this in PDF content)
19

(check this in PDF content)
20

(check this in PDF content)