The 46 references in paper A. Rudenkov S., V. Kisel E., A. Yasukevich S., K. Hovhannesyan L., A. Petrosyan G., N. Kuleshov V., А. Руденков С., В. Кисель Э., А. Ясюкевич С., К. Ованесьян Л., А. Петросян Г., Н. Кулешов В. (2018) “Регенеративный усилитель чирпированных фемтосекундных импульсов на основе кристалла Yb:CALYO для спектроскопии возбуждения-зондирования с высоким временным разрешением // Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy” / spz:neicon:pimi:y:2018:i:3:p:205-214

1
Breitling D., Föhl C., Dausinger F., Kononenko T., Konov V. Ultrashort Interaction with Materials. Femtosecond Technology for Technical and Medical Applications. F. Dausinger, F. Lichtner, H. Lubatschowski, eds. Springer, Berlin, 2004. doi: 10.1007/b96440
(check this in PDF content)
2
Russbueldt P., Mans T., Weitenberg J., Hoffmann H.D., Poprawe R. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett., 2010, vol. 35, рр. 4169–4171. doi: 10.1364/OL.35.004169
(check this in PDF content)
3
Eidam Tino, Hanf Stefan, Seise Enrico, V. Andersen Thomas, Gabler Thomas, Wirth Christian, Schreiber Thomas, Limpert Jens, Tünnermann Andreas. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett., 2010, vol. 35, pp. 94–96. https:// doi.org/10.1364/OL.35.000094
(check this in PDF content)
4
Fleischhaker R., Gebs R., Budnicki A., Wolf M., Kleinbauer J., Sutter D.H. Compact gigawatt-class sub-picosecond Yb:YAG thin-disk regenerative chirped-pulse amplifier with high average power at up to 800 kHz. 2013 Conference on Lasers and ElectroOptics – International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_4_1. https:// doi.org/10.1109/CLEOE-IQEC.2013.6801054
(check this in PDF content)
5
Schneider W., Ryabov A., Lombosi Cs., Metzger T., Major Zs., Fülöp J.A., Baum P. 800-fs, 330 μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3. Opt. Lett., 2014, vol. 39, pp. 6604–6607. https://doi.org/10.1364/OL.39.006604.
(check this in PDF content)
6
Pouysegur J., Delaigue M., Honninger C., Zaouter Y., Georges P., Druon F., Mottay E. Numerical and Experimental Analysis of Nonlinear Regenerative Amplifiers Overcoming the Gain Bandwidth Limitation. Selected Topics in Quantum Electronics, IEEE Journal of, 2015, vol. 21, no. 1, pp. 212, 219. https:// doi.org/10.1109/JSTQE.2014.2321520
(check this in PDF content)
7
Caracciolo E., Pirzio F., Kemnitzer M., Gorjan M., Guandalini A., Kienle F., Agnesi A., Aus Der Au J. 42 W femtosecond Yb:Lu2O3 regenerative amplifier. Opt. Lett., 2016, vol. 41, pp. 3395–3398. https:// doi.org/10.1364/OL.41.003395
(check this in PDF content)
8
Caracciolo E., Kemnitzer M., Guandalini A., Pirzio F., Aus der Au J., Agnesi A. 28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers. Opt. Lett., 2013, vol. 38, pp. 4131–4133. https:// doi.org/10.1364/OL.38.004131.
(check this in PDF content)
9
Raybaut P., Balembois F., Druon F., Georges P. Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers. IEEE Journal of Quantum Electronics, 2005, vol. 41, no. 3, pp. 415– 425. doi: 10.1109/JQE.2004.841930
(check this in PDF content)
10
Kim G.H., Yang J., Chizhov S.A., Sall E.G., Kulik A.V., Yashin V.E., Kang U. A high brightness Q-switched oscillator and regenerative amplifier based on a dual-crystal Yb:KGW laser. Laser Phys. Lett., 2013, vol. 10, 125004 (5 p.). https://doi.org/10.1088/1612-2011/10/12/125004
(check this in PDF content)
11
Pouysegur Julien, Delaigue Martin, Zaouter Yoann, Hönninger Clemens, Mottay Eric, Jaffrès Anaël, Loiseau Pascal, Viana Bruno, Georges Patrick, Druon Frédéric. Sub-100-fs Yb:CALGO nonlinear regenerative amplifier. Opt. Lett., 2013, vol. 38, pp. 5180–5183. https:// doi.org/10.1364/OL.38.005180
(check this in PDF content)
12
Pirzio Federico, Cafiso D. Di Dio Samuele, Kemnitzer Matthias, Guandalini Annalisa, Kienle Florian, Veronesi Stefano, Tonelli Mauro, Aus der Au Juerg, Agnesi Antonio. Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode. Opt. Express, 2015, vol. 23, pp. 9790–9795. https:// doi.org/10.1364/OE.23.009790
(check this in PDF content)
13
Gao Ziye, Zhu Jiangfeng, Wang Junli, Wei Zhiyi, Xu Xiaodong, Zheng Lihe, Su Liangbi, Xu Jun. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser. Photon. Res., 2015, vol. 3, pp. 335– 338. https:// doi.org/10.1364/PRJ.3.000335
(check this in PDF content)
14
Ma Jie, Huang Haitao, Ning Kaijie, Xu Xiaodong, Xie Guoqiang, Qian Liejia, Ping Loh Kian, Tang Dingyuan. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser. Opt. Lett., 2016, vol. 41, pp. 890–893. https:// doi.org/10.1364/OL.41.000890
(check this in PDF content)
15
Kaminskii A.A., Petrosyan A.G., Ovanesyan K.L., Shirinyan G.O., Butaeva T.I., Markosyan A.A. Two generation channels of the CaYAlO4 disordered crystal. Inorganic Materials, 1991, vol. 27, pp. 426–427. 213
(check this in PDF content)
16
Sumida D.S., Fan T.Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett., 1994, vol. 19, pp. 1343–1345. https:// doi.org/10.1364/OL.19.001343
(check this in PDF content)
17
Kühn Henning, Fredrich-Thornton Susanne T., Kränkel Christian, Peters Rigo, Petermann Klaus. Model for the calculation of radiation trapping and description of the pinhole method. Opt. Lett., 2007, vol. 32, pp. 1908– 1910. https:// doi.org/10.1364/OL.32.001908
(check this in PDF content)
18
Yasyukevich A.S., Shcherbitskii V.G., Kisel V.E., Mandrik A.V., Kuleshov N.V. Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers. Journal of Applied Spectroscopy, 2004, vol. 71, no. 2, pp. 202– 208. https:// doi.org/10.1023/B:JAPS.0000032875.04400.a0.
(check this in PDF content)
19
Li Dongzhen, Xu Xiaodong, Zhu Haomiao, Chen Xueyuan, Tan Wei De, Zhang Jian, Tang Dingyuan, Ma Jan, Wu Feng, Xia Changtai, Xu Jun. Characterization of laser crystal Yb:CaYAlO4. J. Opt. Soc. Am. B 28, 2011, pp. 1650–1654. https:// doi.org/10.1364/JOSAB.28.001650
(check this in PDF content)
20
Kisel V.E., Rudenkov A.S., Pavlyuk A.A., Kovalyov A.A., Preobrazhenskii V.V., Putyato M.A., Rubtsova N.N., Semyagin B.R., Kuleshov N.V. Highpower, efficient, semiconductor saturable absorber modelocked Yb:KGW bulk laser. Opt. Lett., 2015, vol. 40, pp. 2707–2710. https:// doi.org/10.1364/OL.40.002707
(check this in PDF content)
21
Rudenkov Alexander, Kisel Viktor, Matrosov Vladimir, Kuleshov Nikolai. 200 kHz 5.5 W Yb3+:YVO4-based chirped-pulse regenerative amplifier. Opt. Lett., 2015, vol. 40, pp. 3352–3355. https:// doi.org/10.1364/OL.40.003352.
(check this in PDF content)
22
Rudenkov Alexander, Kisel Viktor, Yasukevich Anatol, Hovhannesyan Karine, Petrosyan Ashot, Kuleshov Nikolay. Yb3+:LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification. Opt. Lett., 2017, vol. 42, pp. 2415–2418. https:// doi.org/10.1364/OL.42.002415
(check this in PDF content)
23
Agrawal G.P. Nonlinear Fiber Optics (Fourth Edition). Optics and Photonics, Academic Press, San Diego, 2006, p. 529. https://doi.org/10.1016/B978-0-12-369516-1.X5000-6. 214
(check this in PDF content)
1

(check this in PDF content)
2

(check this in PDF content)
3

(check this in PDF content)
4

(check this in PDF content)
5

(check this in PDF content)
6

(check this in PDF content)
7

(check this in PDF content)
8

(check this in PDF content)
9

(check this in PDF content)
10

(check this in PDF content)
11

(check this in PDF content)
12

(check this in PDF content)
13

(check this in PDF content)
14

(check this in PDF content)
15

(check this in PDF content)
16

(check this in PDF content)
17

(check this in PDF content)
18

(check this in PDF content)
19

(check this in PDF content)
20

(check this in PDF content)
21

(check this in PDF content)
22

(check this in PDF content)
23

(check this in PDF content)