The 18 references in paper A. Esman K., V. Kostenko I., N. Mukhurov I., G. Zykov L., V. Potachits A., А. Есман К., В. Костенко И., Н. Мухуров И., Г. Зыков Л., В. Потачиц А. (2016) “ВЫСОКОЭФФЕКТИВНЫЙ ПРИЕМНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ // HIGH-EFFICIENCY INFRARED RECEIVER” / spz:neicon:pimi:y:2016:i:2:p:129-135

1
Sydlo C., Cojocari O., Schonherr D., Goebel T., Meissner P., Hartnagel H.L. Fast THz detectors based on InGaAs Schottky diodes. Frequenz, 2008, vol. 62, no. 5-6, pp. 107–110.
(check this in PDF content)
2
Ferguson B., Zhang X.-C. Materials for terahertz science and technology. Nature Materials, 2002, no. 1, pp. 26–33.
(check this in PDF content)
3
Pierrehumbert R.T. Infrared radiation and planetary temperature. Physics Today, 2011, vol. 64, iss. 1, pp. 33–38.
(check this in PDF content)
4
Pupeza I., Sanchez D., Zhang J., Lilienfein N., Seidel M., Karpowicz N., Paasch-Colberg T., Znakovskaya I., Pescher M., Schweinberger W., Pervak V., Fill E., Pronin V., Wei F., Krausz F., Apolonski A., Biegert J. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 2015, vol. 9, no. 11, pp. 721–724.
(check this in PDF content)
5
Vatansever F., Hamblin M.R. Far infrared radiation (FIR): its biological effects and medical applications. Photonics and Lasers in Medicine, 2012, no. 4, pp. 255–266.
(check this in PDF content)
6
Sigrist M.W. Mid-infrared laser-spectroscopic sensing of chemical species, Journal of Advanced Research, 2015, vol. 6, iss. 3, pp. 529–533.
(check this in PDF content)
7
Rettich F., Vieweg N., Cojocari O., Deninger A. Field intensity detection of individual terahertz pulses at 80 MHz repetition rate. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, vol. 36, iss. 7, pp. 607–612.
(check this in PDF content)
8
Vaks V.L., Anfertev V.A., Goltsman G.N., Pentin I.V., Tretyakov I.V. [High resolution terahertz spectrometer based on nanostructured semiconductor shows that the directivity for the above-mentioned case is improved, i.e. it reaches about 23 (Figures 7 and 8). Figure 7 – Directivity pattern of the mid-infrared electromagnetic radiation receiver with the resonance nano- and microstructures on the azimuthal angle at the elevation angle θ = 180 degrees for the first (curve 1) and second (curve 2) cases and the case given in [17] (curve 3) 134 and superconductor devices]. Zhurnal radioelektroniki [Journal of Radio Electronics]. 2016, no. 1, pp. 54–63 (in Russian).
(check this in PDF content)
9
Shashkin V.I., Murel’ A.V. Diagnostics of lowbarrier Schottky diodes with near-surface δ-doping. Semiconductors, 2008, vol. 42, iss. 4, pp. 490–492.
(check this in PDF content)
10
Sassen S., Witzigmann B., Wolk C., Brugger H. Barrier height engineering on GaAs THz Schottky diodes by means of high-doping, InGaAs- and InGaP-layers. IEEE Transaction on Electron Devices, 2000, vol. 47, pp. 24–32.
(check this in PDF content)
11
Brown E.R. A system-level analysis of Schottky diodes for incoherent THz imaging arrays. Solid-State Electronics, 2004, vol. 48, iss. 10-11, pp. 2051–2053.
(check this in PDF content)
12
Maiwald F., Lewen F., Ahrens V., Beaky M., Gendriesch R., Koroliev A.N., Negirev A.A., Vowinkel G., Winnewisser G. Pure rotational spectrum of HCN in the terahertz region: use of a new planar Schottky diode multiplier. Journal of Molecular Spectroscopy, 2000, vol. 202, iss. 1, pp. 166–168.
(check this in PDF content)
13
Kosyachenko L.A., Markov A.V., Ostapov S.E., Rarenko I.M., Sklyarchuk V.M., Sklyarchuk Ye.F. Electrical properties of narrow-gap HgMnTe Schottky diodes. Semiconductors, 2002, vol. 36, iss. 10, pp. 1138– 1145.
(check this in PDF content)
14
Shevchik-Shekera A.V. [Real and limit sensitivity of some radiation detectors of THz/sub-THz ranges]. Tekhnologiya i konstruirovaniye v elektronnoy apparature [Technology and design in electronic equipment]. 2012, no. 1, pp. 3–6 (in Russian).
(check this in PDF content)
15
Kazemi H., Shinohara K., Nagy G., Ha W., Lail B., Grossman E., Zummo G, Folks W.R., Alda J., Boreman G. First THz and IR characterization of nanometer-scaled antenna-coupled InGaAs/InP Schottky-diode detectors for room temperature infrared imaging. Proc. of SPIE, 2007, vol. 6542, pp. 65421J-1–4.
(check this in PDF content)
16
Zakamov V.R., Chechenin Y.I., Pryakhin D.A., Yurasov D.V. [Low-barrier Schottky diode on silicon wafers with lateral structure]. Uspekhi Prikladnoi Fiziki [Advances in Applied Physics]. 2013, vol. 1, no. 1, pp. 97– 104 (in Russian).
(check this in PDF content)
17
Esman A.K., Kuleshov V.K., Zykov G.L., Zalesski V.B. [Infrared detector on the basis of the Schottky junction with the resonance nano- and microstructures]. Nano- i mikrosistemnaya tekhnika [Journal of Nano and Microsystem Technique]. 2014, no. 3, pp. 44–46 (in Russian).
(check this in PDF content)
18
Bankov S.E., Guttsayt E.M., Kurushin A.A. Reshenie opticheskikh i SVCh zadach s pomoshch’yu HFSS [The solution of optical and microwave problems using HFSS]. Moscow, Orkada Publ., 2012. 250 p. 135
(check this in PDF content)