The 24 references in paper A. Mudunov M., Али Мудунов Мурадович (2015) “Новое поколение мультитаргетных ингибиторов тирозинкиназ в лечении радиойодрефрактерного дифференцированного рака щитовидной железы // New-generation mutitargeted tyrosine kinase inhibitors in the treatment of radioactive iodine-refractory differentiated thyroid cancer” / spz:neicon:ogsh:y:2015:i:2:p:30-34

1
Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9.
(check this in PDF content)
2
Sgouros G., Kolbert K. S., Sheikh A. et al. Patient-specific dosimetry for I131 thyroid cancer therapy using I124 PET and
(check this in PDF content)
3
dimensional-internal dosimetry (3D–ID) software. J Nucl Med 2004;45(8):1366–72. 3. Leboulleux S., El Bez I., Borget I. et al. Postradioiodine treatment whole-body scan in the era of 18-fluorodesoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum thyroglobulin levels. Thyroid 2012;22(8): 832–8.
(check this in PDF content)
4
Vaisman F., Tala H., Grewal R., Tuttle R. M. In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response. Thyroid 2011;21(12):1317–22.
(check this in PDF content)
5
Deandreis D., Al Ghuzlan A., Leboulleux S., et al. Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptake) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18(1):159–69.
(check this in PDF content)
6
Schlumberger M., Brose M., Elisei R. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2(5):356–8.
(check this in PDF content)
7
Sabra M. M., Grewal R. K., Tala H. et al. Clinical outcomes following empiric radioiodine therapy in patients with structurally identifiable metastatic follicular cell-derived thyroid carcinoma with negative diagnostic but positive post-therapy I131 whole-body scans. Thyroid 2012; 22(9):
(check this in PDF content)
8
7–83. 8. Robbins R. J., Wan Q., Grewal R. K. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2- [18F] fluoro-2-deoxyD-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91(2):498–505.
(check this in PDF content)
9
Rubino C., De Vathaire F., Dottorini M. E. et al. Second primary malignancies in thyroid cancer patients. Br J Cancer 2003;89(9):1638–44.
(check this in PDF content)
10
Wells S. A. Jr., Robinson B. G., Gagel R. F. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind Phase III trial. J Clin Oncol 2012;30(2):134–41.
(check this in PDF content)
11
Elisei R., Schlumberger M. J., Müller S. P. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31(29):3639–46.
(check this in PDF content)
12
Kroll T. G., Sarraf P., Pecciarini L. et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 2000;289(5483):1357–60.
(check this in PDF content)
13
Hou P., Liu D., Xing M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle 2007;6(3):377–9.
(check this in PDF content)
14
Saji M., Ringel M. D. The PI3K-AktmTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol 2010;321(1):20–8.
(check this in PDF content)
15
Mulligan L. M., Kwok J. B., Healey C. S. et al. Germ-line mutations of the RET protooncogene in multiple endocrine neoplasia type 2A. Nature 1993;363(6428):458–60.
(check this in PDF content)
16
Learoyd D. L., Messina M., Zedenius J., Robinson B. G. Molecular genetics of thyroid tumors and surgical decision-making. World J Surg 2000;24(8):923–33.
(check this in PDF content)
17
Holbro T., Civenni G., Hynes N. E. The ErbB receptors and their role in cancer progression. Exp Cell Res 2003; 284(1):99–110.
(check this in PDF content)
18
Matsui J., Funahashi Y., Uenaka T. et al. Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 2008; 14(17):5459–65.
(check this in PDF content)
19
Krause D. S., Van Etten R. A. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005;353(2):172–87.
(check this in PDF content)
20
Antonelli A., Fallahi P., Ferrari S. M. et al. Dedifferentiated thyroid cancer: a therapeutic challenge. Biomed Pharmacother 2008; 62(8):559–63.
(check this in PDF content)
21
Grande E., Diez J. J., Zafon C., Capdevila J. Thyroid cancer: molecular aspects and new therapeutic strategies. J Thyroid Res 2012;2012:847108.
(check this in PDF content)
22
Stjepanovic N., Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics 2014;8:129–39.
(check this in PDF content)
23
Sherman S. I., Jarzab B., Cabanillas M. E. et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodinerefractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer 2015.
(check this in PDF content)
24
Schlumberger M., Tahara M., Wirth L. J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372:621–30.
(check this in PDF content)