The 25 linked references in paper M. de C. Fonseca, C. Aguiar J., J. da Rocha Franco A., R. Gingold N., M. Leite F., М. де К. Фонсека, К. Агуйар Дж., Ж. да Роча Франко А., Р. Гинголд Н., М. Лейте Ф. (2017) “GPR91: РАСШИРЕНИЕ ПРЕДСТАВЛЕНИЙ О МЕТАБОЛИТАХ ЦИКЛА КРЕБСА // GPR91: EXPANDING THE FRONTIERS OF KREBS CYCLE INTERMEDIATES” / spz:neicon:nefr:y:2017:i:1:p:9-18

  1. Thunberg T. Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen. Enzyme Skandinavisches Archiv für Physiologie 1920;40:1–91. doi: 10.1111/j.1748-1716.1920. tb01412.x
  2. Fedotcheva NI, Sokolov AP, Kondrashova MN. Nonenzymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med 2006;41:56–64. doi: 10.1016/j.freeradbiomed.2006.02.012
  3. Brosnan JT, Krebs HA, Williamson DH. Effects of Ischaemia on Metabolite Concentrations in Rat Liver. Biochent J 1970;117:91–96. doi: 10.1042/bj1170091
  4. Chouchani ET, Pell VR, Gaude E et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014;515(7527):431–435. doi: 10.1038/nature13909
  5. Knauf F, Rogina B, Jiang Z et al. Functional characterization and immunolocalization of the transporter encoded by the lifeextending gene Indy. Proc Natl Acad Sci U S A 2002;99:14315– 14319. doi: 10.1073/pnas.222531899
  6. Inoue K, Fei YJ, Zhuang L et al. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem J 2004;378:949–957. doi: 10.1042/BJ20031261
  7. He W, Miao FJ, Lin DC et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 2004;429(6988):188–193. doi: 10.1038/nature02488
  8. Bhuniya D, Umrani D, Dave B et al. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett 2011;21(12):3596–3602. doi: 10.1016/j. bmcl.2011.04.091
  9. Hakak Y, Lehmann-Bruinsma K, Phillips S et al. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol 2009;85:837–843. doi: 10.1189/jlb.1008618
  10. Aguiar CJ, Rocha-Franco JA, Sousa PA et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal 2014;12(1):78. doi: 10.1186/ s12964-014-0078-2
  11. Toma I, Kang JJ, Sipos A et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest 2008;118:2526–2534. doi: 10.1172/JCI33293
  12. Vargas SL, Toma I, Kang JJ et al. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol 2009;20(5):1002–11. doi: 10.1681/ ASN.2008070740
  13. Robben JH, Fenton RA, Vargas SL et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int 2009;76(12):1258–1267. doi: 10.1038/ki.2009.360
  14. Correa PRAV, Krulog EA, Thompsom M et al. Succinate is a paracrine signal for liver damage. J Hepatology 2007;47:262–269. doi: 10.1016/j.jhep.2007.03.016
  15. Sapieha P, Sirinyan M, Hamel D et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 2008;14(10):1067–1076. doi: 10.1038/nm.1873
  16. Rubic T, Lametschwandtner G, Jost S et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol 2008;9:1261–1269. doi: 10.1038/ni.1657
  17. Macaulay IC, Tijssen MR, Thijssen-Timmer DC et al. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood 2007;109:3260– 3269. doi: 10.1182/blood-2006-07-036269
  18. Li YH, Woo SH, Choi DH, Cho EH. Succinate causes a-SMA production through GPR91 activation in hepatic stellate cells. Biochem Biophys Res Commun 2015;463:853–858. doi: 10.1016/j. bbrc.2015.06.023
  19. Joyal JS, Sitaras N, Binet F et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood 2011;117:6024–6035. doi: 10.1182/ blood-2010-10-311589
  20. Hu J, Wu Q, Li T et al. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein-coupled receptor 91. Exp Eye Res 2013;109:31–39. doi: 10.1016/j.exer.2013.01.011
  21. Hu J, Li T, Du S et al. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int J Mol Med 2015;36(1):130–138. doi: 10.3892/ijmm.2015.2195
  22. Sadagopan N, Li W, Roberds SL et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens 2007;20(11):1209–1215. doi: 10.1016/j. amjhyper.2007.05.010
  23. McCreath KJ, Espada S, Gálvez BG et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes 2015;64(4):1154–1167. doi: 10.2337/ db14-0346
  24. Aguiar CJ, Andrade VL, Gomes ER et al. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium 2010;47(1):37–46. doi: 10.1016/j.ceca.2009.11.003
  25. Davili Z, Johar S, Hughes C et al. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr 2007;166:867–870. doi: 10.1007/s00431-006-0310-1 Статья переведена на русский язык и опубликова-