The 46 linked references in paper A. Vatazin V., A. Zulkarnaev B., А. Ватазин В., А. Зулькарнаев Б. (2017) “ЭНДОТОКСИН И ХРОНИЧЕСКОЕ ВОСПАЛЕНИЕ ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК // ENDOTOXIN AND CHRONIC INFLAMMATION IN PATIENTS WITH CHRONIC KIDNEY DISEASE” / spz:neicon:nefr:y:2016:i:6:p:26-32

  1. Terawaki H, Yokoyama, Yamada Y et al. Low-grade endotoxemia contributes to chronic inflammation in hemodialysis patients: examination with a novel lipopolysaccharide detection method. Ther Apher Dial 2010; 14(5):477-482. doi: 10.1111/j.17449987.2010.00815.x
  2. McIntyre CW, Harrison LE, Eldehni MT et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol 2011; 6(1):133-141. doi: 10.2215/CJN.04610510
  3. Gyorfy Z, Duda E, Vizler C. Interactions between LPS moieties and macrophage pattern recognition receptors. Vet Immunol Immunopathol 2013; 152(1-2):28-36. doi: 10.1016/j. vetimm.2012.09.020
  4. Ward PA. Role of C5 activation products in sepsis. ScientificWorldJournal 2010; 10:2395-2402. doi: 10.1100/tsw.2010.216
  5. Kozarcanin H, Lood C, Munthe-Fog L et al. The lectin complement pathway serine proteases (MASPs) represent a possible crossroad between the coagulation and complement systems in thromboinflammation. J Thromb Haemost 2016; 14(3):531-545. doi: 10.1111/jth.13208
  6. Esmon CT, Xu J, Lupu F. Innate immunity and coagulation. J Thromb Haemost 2011; 9 Suppl 1:182-188. doi: 10.1111/j.15387836.2011.04323.x
  7. Lassenius MI, Pietiläinen KH, Kaartinen K et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care 2011; 34(8):1809-1815. doi: 10.2337/dc10-2197
  8. Boutagy NE, McMillan RP, Frisard MI et al. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 2016; 124:11-20. doi: 10.1016/j.biochi.2015.06.020
  9. Feroze U, Kalantar-Zadeh K, Sterling KA et al. Examining associations of circulating endotoxin with nutritional status, inflammation, and mortality in hemodialysis patients. J Ren Nutr 2012; 22(3):317-326. doi: 10.1053/j.jrn.2011.05.004
  10. Lau WL, Kalantar-Zadeh K, Vaziri ND. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron 2015; 130(2):92-98. doi: 10.1159/000381990
  11. Sabatino A, Regolisti G, Brusasco I et al. Alterations of intestinal barrier and microbiota in chronic kidney disease. Nephrol Dial Transplant 2015; 30(6):924-933. doi: 10.1093/ndt/gfu287
  12. Shi K, Wang F, Jiang H et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig Dis Sci 2014; 59(9):2109-2117. doi: 10.1007/s10620-014-3202-7
  13. Hazzah WA, Hashish MH, El-Koraie AF et al. Circulating bacterial DNA fragments in chronic hemodialysis patients. Saudi J Kidney Dis Transpl 2015; 26(6):1300-1304. doi: 10.4103/13192442.168689
  14. Marinho AC, Polay AR, Gomes BP. Accuracy of Turbidimetric Limulus Amebocyte Lysate Assay for the Recovery of Endotoxin Interacted with Commonly Used Antimicrobial Agents of Endodontic Therapy. J Endod 2015; 41(10):1653-1659. doi: 10.1016/j.joen.2015.05.020
  15. Wong J, Vilar E, Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial; 28(1):59-67. doi: 10.1111/sdi.12280
  16. Shimizu T, Obata T, Sonoda H et al. Diagnostic potential of endotoxin scattering photometry for sepsis and septic shock. Shock 2013; 40(6):504-511. doi: 10.1097/SHK.0000000000000056
  17. Ding JL, Ho B. Endotoxin detection-from limulus amebocyte lysate to recombinant factor C. Subcell Biochem 2010; 53:187-208. doi: 10.1007/978-90-481-9078-2_9
  18. Yaguchi A, Yuzawa J, Klein DJ et al. Combining intermediate levels of the Endotoxin Activity Assay (EAA) with other biomarkers in the assessment of patients with sepsis: results of an observational study. Crit Care 2012; 16(3):R88. doi: 10.1186/ cc11350
  19. Poesen R, Ramezani A, Claes K et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin J Am Soc Nephrol 2015; 10(9):1525-1533. doi: 10.2215/ CJN.03100315.
  20. Raj DS, Shah VO, Rambod M et al. Association of soluble endotoxin receptor CD14 and mortality among patients undergoing hemodialysis. Am J Kidney Dis 2009; 54(6):1062-1071. doi: 10.1053/j.ajkd.2009.06.028
  21. Cobo G, Qureshi AR, Lindholm B, Stenvinkel P. C-reactive Protein: Repeated Measurements will Improve Dialysis Patient Care. Semin Dial 2016; 29(1):7-14. doi: 10.1111/sdi.12440
  22. Brandenburg K, Heinbockel L, Correa W et al. Peptides with dual mode of action: Killing bacteria and preventing endotoxininduced sepsis. Biochim Biophys Acta 2016; 1858(5):971-979. doi: 10.1016/j.bbamem.2016.01.011
  23. Sun Y, Shang D. Inhibitory Effects of Antimicrobial Peptides on Lipopolysaccharide-Induced Inflammation. Mediators Inflamm 2015; 2015:167572. doi: 10.1155/2015/167572
  24. Moraes C, Fouque D, Amaral AC et al. Trimethylamine N-Oxide From Gut Microbiota in Chronic Kidney Disease Patients: Focus on Diet. J Ren Nutr 2015; 25(6):459-465. doi: 10.1053/j. jrn.2015.06.004
  25. Machowska A, Carrero JJ, Lindholm B et al. Therapeutics targeting persistent inflammation in chronic kidney disease. Transl Res 2016; 167(1):204-213. doi: 10.1016/j.trsl.2015.06.012
  26. Rossi M, Johnson DW, Campbell KL. The Kidney-Gut Axis: Implications for Nutrition Care. J Ren Nutr 2015; 25(5):399-403. doi: 10.1053/j.jrn.2015.01.017
  27. Sun PP, Perianayagam MC, Jaber BL. Endotoxinbinding affinity of sevelamer: a potential novel anti-inflammatory mechanism. Kidney Int Suppl 2009; (114):S20-5. doi: 10.1038/ ki.2009.403
  28. Rodríguez-Osorio L, Zambrano DP, Gracia-Iguacel C et al. Use of sevelamer in chronic kidney disease: beyond phosphorus control. Nefrologia 2015; 35(2):207-217. doi: 10.1016/j. nefro.2015.05.022
  29. Mafra D, Fouque D. Gut microbiota and inflammation in chronic kidney disease patients. Clin Kidney J 2015; 8(3):332-334. doi: 10.1093/ckj/sfv026
  30. Wing MR, Patel SS, Ramezani A et al. Gut microbiome in chronic kidney disease. Exp Physiol 2016; 101(4):471-477. doi: 10.1113/EP085283
  31. Coulliette AD, Arduino MJ. Hemodialysis and water quality. Semin Dial 2013; 26(4):427-438. doi: 10.1111/sdi.12113
  32. Schiffl H. High-flux dialyzers, backfiltration, and dialysis fluid quality. Semin Dial 2011; 24(1):1-4. doi: 10.1111/j.1525139X.2010.00786.x
  33. Glorieux G, Hulko M, Speidel R et al. Looking beyond endotoxin: a comparative study of pyrogen retention by ultrafilters used for the preparation of sterile dialyis fluid. Sci Rep 2014; 4:6390. doi: 10.1038/srep06390
  34. Glorieux G, Neirynck N, Veys N, Vanholder R. Dialysis water and fluid purity: more than endotoxin. Nephrol Dial Transplant 2012; 27(11):4010-4021. doi: 10.1093/ndt/gfs306
  35. Bowry SK, Gatti E, Vienken J. Contribution of polysulfone membranes to the success of convective dialysis therapies. Contrib Nephrol 2011; 173:110-118. doi: 10.1159/000328960
  36. Thomas M, Moriyama K, Ledebo I. AN69: Evolution of the world’s first high permeability membrane. Contrib Nephrol 2011; 173:119-129. doi: 10.1159/000328961
  37. Perego AF. Adsorption techniques: dialysis sorbents and membranes. Blood Purif 2013; 35 Suppl 2:48-51. doi: 10.1159/000350848
  38. Aucella F, Gesuete A, Vigilante M et al. Adsorption dialysis: from physical principles to clinical applications. Blood Purif 2013; 35 Suppl 2:42-47. doi: 10.1159/000350847
  39. Tijink MS, Wester M, Sun J et al. A novel approach for blood purification: mixed-matrix membranes combining diffusion and adsorption in one step. Acta Biomater 2012; 8(6):2279-2287. doi: 10.1016/j.actbio.2012.03.008
  40. Tijink MS, Kooman J, Wester M et al. Mixed matrix membranes: a new asset for blood purification therapies. Blood Purif 2014; 37(1):1-3. doi: 10.1159/000356226
  41. Li L, Ling Y, Huang M et al. Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages. Cytokine 2015; 72(1):3642. doi: 10.1016/j.cyto.2014.12.010
  42. Li X, Liu Y, Wang L et al. Unfractionated heparin attenuates LPS-induced IL-8 secretion via PI3K/Akt/NF-κB signaling pathway in human endothelial cells. Immunobiology 2015; 220(3):399-405. doi: 10.1016/j.imbio.2014.10.008
  43. Li X, Li X, Zheng Z et al. Unfractionated heparin suppresses lipopolysaccharide-induced monocyte chemoattractant protein-1 expression in human microvascular endothelial cells by blocking Krüppel-like factor 5 and nuclear factor-κB pathway. Immunobiology 2014; 219(10):778-785. doi: 10.1016/j.imbio.2014.06.005
  44. Li X, Zheng Z, Li X, Ma X. Unfractionated heparin inhibits lipopolysaccharide-induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell. Cytokine 2012; 60(1):114-121. doi: 10.1016/j.cyto.2012.06.008
  45. Li X, Zheng Z, Mao Y, Ma X. Unfractionated heparin promotes LPS-induced endothelial barrier dysfunction: a preliminary study on the roles of angiopoietin/Tie2 axis. Thromb Res 2012; 129(5):e223-228. doi: 10.1016/j.thromres.2012.03.003
  46. Luan ZG, Naranpurev M, Ma XC. Treatment of low molecular weight heparin inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats. Inflammation 2014; 37(3):924-932. doi: 10.1007/s10753-014-9812-6 Сведения об авторах: