The 142 linked references in paper Vladimir Dobronravov A., Владимир Добронравов Александрович (2016) “Фосфат, почки, кости и сердечно-сосудистая система // Phosphate, kidneys, bones and cardiovascular system” / spz:neicon:nefr:y:2016:i:4:p:10-24

  1. Kestenbaum B, Sampson JN, Rudser KD et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16: 520–528. doi: 10.1681/ ASN.2004070602
  2. McGovern AP, De Lusignan S, Van Vlymen J et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based Представления о последовательности, взаимосвязях и эффектах основных событий, связанных с дисрегуляцией обмена неорганического фосфата и развитием изменений в сердечно-сосудистой системе (комментарии см. в тексте). Pi – неорганический фосфат; СКФ – скорость клубочковой фильтрации; ГМК – гладкомышечные клетки; ПЩЖ – паращитовидные железы; рKlotho – Klotho в ПЩЖ; rKlotho – почечный пул Klotho; vKlotho – сосудистый пул Klotho; sKlotho – циркулирующий Klotho; Wnt – сигнальный путь Wingless/integration; iWnt – эндогенные ингибиторы Wnt; BMP – костные морфогенетические белки; MEPE – matrix extracellular
  3. Kendrick J, Kestenbaum В, Chonchol М. Phosphate and Cardiovascular Disease. Adv Chronic Kidney Dis 2011; 18(2): 113–119. doi: 10.1053/j.ackd.2010.12.003
  4. Blacher J, Asmar R, Djane S et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33(5): 1111–1117. doi: 10.1161/01.HYP.33.5.1111
  5. Hollander M, Hak AE, Koudstaal PJ et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke 2003; 34(10): 2367–2372. doi: 10.1161/01. STR.0000091393.32060.0E
  6. Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008; 358:1336–1345. doi: 10.1056/NEJMoa072100
  7. Micheletti RG, Fishbein GA, Currier JS et al. Monckebe r g sclerosis revisited: a clarification of the histologic definition of Monckeberg sclerosis. Arch Pathol Lab Med 2008; 132: 43–47. doi: 10.2215/ CJN.01930408
  8. Ix JH, De Boer IH, Peralta CA et al. Serum phosp h orus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA. Clin J Am Soc Nephrol 2009; 4: 609–615. doi: 10.2215/CJN.04100808
  9. Foley RN, Collins AJ, Herzog CA et al. Serum phosph o rus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20: 397–404. doi: 10.1681/ASN.2008020141
  10. Kendrick J, Ix JH, Targher G et al. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol 2010; 106(4): 564-568. doi: 10.1016/j.amjcard.2010.03.070
  11. Li JW, Xu C, Fan Y et al. Can serum lev e ls of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276
  12. Culleton BF, Walsh M, Karenbach SW et al. Effect of frequ e nt nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007;298:1291–1299. doi: 10.1001/jama.298.11.1291
  13. Yamamoto KT, Robinson-Cohen C, De Oliveira MC et al. Dietary phospho rus is associated with greater left ventricular mass. Kidney Int 2013; 83(4): 707 -714. doi: 10.1038/ki.2012.303
  14. Chonchol M, Dale R, Schrier RW, Estacio R. Serum phosphorus a n d cardiovascular mortality in type 2 diabetes. Am J Med. 2009;122:380–386. doi: 10.1016/j.amjmed.2008.09.039
  15. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate le v els and cardiovascular disease in community-swelling adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008; 1 5 6: 556–563. doi: 10.1016/j.ahj.2008.05.016
  16. Li JW, Xu C, Fan Y, Wang Y et al.Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One. 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276
  17. Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosp h o rus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta–analysis. J Am Med Assoc. 2011; 305: 1119–1127. doi: 10.1001/jama.2011.308
  18. Kuro -o M. Klotho, phosphate and FG F -23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9 :650–660. doi: 10.1038/nrneph.2013.111
  19. Dobronravov V, Kaukov I, Smirnov A. Dietary protein intake i s independently associated with the urinary excretion of phosphate. Kidney Res and Clin Practice. 2012; 31(2): A28-A29. doi: 10.1016/j.krcp.2012.04.374
  20. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end – stage renal disease in patients with chronic kidney disease. JAMA 2011;305: 2432–2439 . doi:10.1001/ jama.2011.826
  21. Pavik I, Jaeger P, Ebner L. Secreted Klotho and FGF23 i n chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013; 28(2): 352359. doi: 10.1093/ndt/gfs460
  22. Barker SL, Pastor J, Carranza D et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 2015 ;30(2):223-233. doi: 10.1093/ndt/gfu291.
  23. Schiavi SC, Tang W, Bracken C et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol. 2012; 23:1691–1700. doi: 10.1681/ASN.2011121213
  24. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012; 70:311–321. doi: 10.1111/j.1753-4887.2012.00473.x
  25. Karp HJ, Kemi VE, Lamberg-Allardt CJ, Karkkainen MU. Mono- and polyphosphates ha ve similar effects on calcium and phosphorus metabolism in healthy young women. Eur J Nutr. 2013; 52: 991–996. doi: 10.1007/s00394-012-0406-5
  26. London GM et al. Arterial calcifications and bo ne histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004; 15: 1943–51. doi:10.1097/01.ASN.0000129337.50739.48
  27. Ferreira JC, Ferrari GO, Neves KR et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney diseaserole of sclerostin? PLoS One. 2013; 8(11):e79721. doi: 10.1371/journal.pone.0079721
  28. Рereira RC, Juppner H, Azucena-Serrano CE et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009; 45:1161–68. doi: 10.1016/j. bone.2009.08.008
  29. Drüeke TB, Massy ZA.Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89(2):289302. doi: 10.1016/j.kint.2015.12.004
  30. Rendenbach C, Yorgan TA, Heckt T et al. Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int. 2014; 94(5):474-483. doi: 10.1007/s00223013-9831-6
  31. Ito N, Findlay DM, Anderson PH et al. Extracellular phosphate modulates the effect of 1α,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013;136:183186. doi: 10.1016/j.jsbmb.2012.09.029
  32. Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone. 2011;49:50–55. doi: 10.1016/j.bone.2010.08.008
  33. Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One. 2012;7(5):e36786. doi: 10.1371/journal.pone.0036786.
  34. Bonewald LF. The amazing osteocyte. J of Bone and Mineral Res. 2011;26(2):229–238. doi: 10.1002/jbmr.320
  35. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629–648. doi: 10.1146/annurev.cellbio.042308.113308
  36. Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010;95:1496–1504. doi: 10.1210/ jc.2009-2677
  37. Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757–1772. doi: 10.1002/jbmr.1630
  38. Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015 Aug;88(2): 235-240. doi: 10.1038/ki.2015.156
  39. Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney International. 2011; 79(121): 14–19. doi: 10.1038/ki.2011.25
  40. Sage AP, Lu J, Tintut Y et al. Hyperphosphatemia -induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011;79:414–422. doi: 10.1038/ki.2010.390
  41. Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium – phosphate deposition. Arterioscler Thromb Vasc Biol. 2009;29:761–766. doi: 10.1161/ATVBAHA.108.183384
  42. Ewence AE, Bootman M, Roderick HL et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008;103:e28–e34. doi: 10.1161/ CIRCRESAHA.108.181305
  43. Smith ER, Ford ML, Tomlinson LA et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012;27(5):1957 -1966. doi: 10.1093/ ndt/gfr609
  44. Abbasian N, Burton JO, Herbert KE et al. Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol. 2015;26: 2152–2162. doi: 10.1681/ASN.2014070642
  45. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333(1):39-48. doi: 10.1016/j.yexcr.2015.02.00
  46. Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2/ Cbfa1. but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010;110:935–947. doi: 10.1002/jcb.22607
  47. Mathew S, Tustison KS, Sugatani T et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008;19:1092–1105. doi: 10.1681/ASN.2007070760
  48. Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267-274. doi: 10.1016/j.tcm.2014.10.021
  49. Gittenberger-de Groot AC, Winter EM, Bartelings MM et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012;84(1):41-53. doi: 10.1016/j. diff.2012.05.002
  50. Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628-1645. doi: 10.1161/CIRCRESAHA.111.259960
  51. Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012;95(2):233-240. doi: 10.1093/cvr/cvs141
  52. Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol. 2013;229(2):221-231. doi: 10.1002/path.4121
  53. Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemiainduced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011;79:414–422. doi: 10.1038/ ki.2010.390
  54. Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008;199:271–277. doi: 10.1016/j.atherosclerosis.2007.11.031
  55. Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012; 21(1): 72-79. doi: 10.1097/MNH.0b013e32834de4ee
  56. Mathew S, Lund RJ, Chaudhary LR et al. Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol. 2008; 19: 1509–1519. doi: 10.1681/ASN.2007080902
  57. Martínez-Moreno JM, Muñoz-Castañeda JR, Herencia C et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation. Am J Physiol Renal Physiol. 2012; 303(8): F1136-144. doi: 10.1152/ajprenal.00684.2011
  58. Lomashvili KA, Narisawa S, Millan JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kid Int. 2014; 85: 1351–1356. doi: 10.1038/ki.2013.521
  59. Hruska KA, Mathew S, Lund RJ et al. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Sem Nephrol. 2009; 29:156–165. doi: 10.1016/j.semnephrol.2009.01.008
  60. Burgaz A, Orsini N, Larsson SC et al. Blood 25 -hydroxyvitamin D concentration and hypertension: a meta-analysis. J Hypertens. 2011; 29: 636–645. doi: 10.1097/HJH.0b013e32834320f9
  61. Pilz S, Marz W, Wellnitz B et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross -sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008; 93: 3927–3935. doi: 10.1210/ jc.2008-0784
  62. Wang TJ, Pencina MJ, Booth SL et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008; 117: 503–511. doi: 10.1161/CIRCULATIONAHA.107.706127
  63. Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta -analysis of prospective studies. Am J Kidney Dis. 2011; 58; 374–382. doi: 10.1053/j.ajkd.2011.03.020
  64. Drechsler C, Verduijn M, Pilz S et al. Vitamin D status and clinical outcomes in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. 2011; 26: 1024–1032. doi: 10.1093/ndt/gfq606
  65. Abu el Maaty MA, Gad MZ. Vitamin D deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo). 2013; 59(6): 479-488. doi: 10.3177/jnsv.59.479
  66. Goettsch C, Iwata H, Aikawa E. Parathyroid hormone: critical bridge between bone metabolism and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1333-1335. doi: 10.1161/ATVBAHA.114.303637
  67. Macfarlane DP, Yu N, Leese GP. Subclinical and asymptomatic parathyroid disease: implications of emerging data. Lancet Diabetes Endocrinol. 2013; 1: 329–340. doi:10.1016/ S2213-8587(13)70083-4
  68. Bosworth C, Sachs MC, Duprez D et al. Parathyroid hormone and arterial dysfunction in the multi-ethnic study of atherosclerosis. Clin Endocrinol (Oxf). 2013; 79(3): 429 -436. doi: 10.1111/cen.12163
  69. Hagström E, Hellman P, Larsson TE et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009; 119: 2765–2771. doi: 10.1161/ CIRCULATIONAHA.108.808733
  70. Нagström E, Michaëlsson K, Melhus H et al. Plasma– parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community -based cohorts. Arterioscler Thromb Vasc Biol. 2014; 34: 1567–1573. doi: 10.1161/ ATVBAHA.113.303062
  71. Nakayama K, Nakao K, Takatori Y et al. Long -term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis. 2013; 7: 25–33. doi: 10.2147/IJNRD.S54731
  72. Lee M, Partridge NC. Parathyroid hormone signaling in bone and kidney. Curr Opin Nephrol Hypertens. 2009; 18(4): 298–302. doi: 10.1097/MNH.0b013e32832c2264
  73. Cheng SL, Shao JS, Halstead LR et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res. 2010; 107: 271–282. doi: 10.1161/CIRCRESAHA.110.219899
  74. Sebastian EM, Suva LJ, Friedman PA. Differential effects of intermittent PTH(1-34) and PTH(7-34) on bone microarchitecture and aortic calcification in experimental renal failure. Bone. 2008;43:1022–30. doi: 10.1016/j.bone.2008.07.250
  75. Yao Y et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010; 107: 485–494. doi: 10.1161/CIRCRESAHA.110.219071
  76. Gutierrez OM, Wolf M, Taylor EN. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the Health Professionals Follow -up Study. Clin J Am Soc Nephrol. 2011; 6: 2871–2878. doi: 10.2215/CJN.02740311
  77. Manghat P, Fraser WD, Wierzbicki AS et al. Fibroblast growth factor -23 is associated with C -reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos Int. 2010; 21:1853–1861. doi: 10.1007/s00198009-1142-4
  78. Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end -stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305:2432–2439. doi: 10.1001/ jama.2011.826
  79. Wolf M, Molnar MZ, Amaral AP et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011; 22: 956–966. doi: 10.1681/ ASN.2010080894
  80. Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584–592. doi: 10.1056/ NEJMoa0706130
  81. Lundberg S, Qureshi AR, Olivecrona S et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol. 2012; 7: 727–734. doi: 10.2215/CJN.10331011
  82. Ix JH, Katz R, Kestenbaum BR et al. Fibroblast growth factor – 23 and death, heart failure, and cardiovascular events in community – living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol. 2012; 60: 200–207. doi: 10.1016/j. jacc.2012.03.040
  83. Ärnlöv J, Carlsson AC, Sundström J et al. Higher fibroblast growth factor – 23 increases the risk of all – cause and cardiovascular mortality in the community. Kidney Int. 2013; 83: 160–166. doi: 10.1038/ki.2012.327
  84. Ärnlöv J, Carlsson AC, Sundström J et al. Serum FGF23 and Risk of Cardiovascular Events in Relation to Mineral Metabolism and Cardiovascular Pathology. Clin J Am Soc Nephrol. 2013; 8(5): 781–786. doi: 10.2215/CJN.09570912
  85. Jovanovich A, Ix JH, Gottdiener J et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community – dwelling older adults. Atherosclerosis. 2013; 231(1): 114-119. doi: 10.1016/j.atherosclerosis.2013.09.002
  86. Scialla JJ, Xie H, Rahman M et al.Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor -23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014; 25(2): 349-360. doi: 10.1681/ASN.2013050465
  87. Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393-4408. doi: 10.1172/JCI46122
  88. Shibata K, Fujita S, Morita H et al.Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One. 2013; 8(9): e73184. doi: 10.1371/journal. pone.0073184
  89. Seifert ME, De Las Fuentes L, Ginsberg C et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am J Nephrol. 2014; 39(5): 392 – 399. doi: 10.1159/000362251
  90. Seiler S, Rogacev KS, Roth HJ et al. Associations of FGF23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin J Am Soc Nephrol. 2014;9(6):1049 -1058. doi: 10.2215/CJN.07870713
  91. Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4: 247. doi: 10.3389/ fphys.2013.0024
  92. Kendrick J, Cheung AK, Kaufman JS et al. FGF – 23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22:1913–1922. doi: 10.1681/ ASN.2010121224
  93. Seiler S, Reichart B, Roth D et al. FGF -23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010;25:3983–3989. doi: 10.1093/ndt/gfq309
  94. Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor – 23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205:385–390. doi: 10.1016/j. atherosclerosis.2009.01.001
  95. Parker BD, Schurgers LJ, Brandenburg VM et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152:640–648. doi: 10.7326/0003-4819-152-10-201005180-00004
  96. Taylor EN, Rimm EB, Stampfer MJ et al. Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J. 2011;161: 956–962. doi: 10.1016/j.ahj.2011.02.012
  97. Srivaths PR, Goldstein SL, Silverstein DM et al. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011;26: 945–951. doi: 10.1007/s00467-011-1822-0
  98. Roos M, Lutz J, Salmhofer H et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008; 68: 660–665. doi: 10.1111/j.13652265.2007.03074.x
  99. Kuro – o М. Phosphate and Klotho. Kidney Intl. 2011;79(121):S20–S23. doi: 10.1038/ki.2011.26
  100. Dai B, David V, Martin A et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012; 7: e44161. doi: 10.1371/ journal.pone.0044161
  101. Hu MC, Kuro -o M, Moe OW. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012;728: 126–157. doi: 10.1007/978-1-4614-0887-1_9
  102. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125:2243–2255. doi: 10.1007/978-1-4614-0887-1_9
  103. Venrooij NA, Pereira RC, Tintut Y et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant. 2014;29(8):1525 -1532. doi: 10.1093/ndt/gft523
  104. Mencke R, Harms G, Mirković K et al. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res. 2015;108(2):220-231. doi: 10.1093/cvr/cvv187
  105. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–136. doi: 10.1681/ASN.2009121311
  106. Zhao Y, Banerjee S, Dey N et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60;1907–1916. doi: 10.2337/db10-1262
  107. Xu Y1, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015;36(2):174-193. doi: 10.1210/ er.2013-1079
  108. Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–136. doi: 10.1681/ASN.2009121311
  109. Dermaku-Sopjani M, Sopjani M, Saxena A et al. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem. 2011;28:251–258. doi: 10.1159/000331737
  110. Nakano-Kurimoto R, Ikeda K et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol. Heart Circ Physiol. 2009;297:1673–1684. doi: 10.1152/ ajpheart.00455.2009
  111. Kuro -o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008;389(3):233–241. doi: 10.1515/ BC.2008.028
  112. Kusaba T, Okigawa M, Matui A et al. Klotho is associated with VEGF receptor -2 and the transient receptor potential canonical -1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. 2010;107(45):19308–19313. doi: 10.1073/ pnas.1008544107
  113. Doi S, Zou Y, Togao O et al. Klotho inhibits transforming growth factor -beta1 (TGF -beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–8665. doi: 10.1074/jbc.M110.174037
  114. Nowak A, Friedrich B, Artunc F et al. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One. 2014;9(7):e100688. doi: 10.1371/ journal.pone.0100688
  115. Six I, Okazaki H, Gross P et al. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014;9(4):e93423. doi: 10.1371/journal.pone.0093423
  116. Xie J, Cha SK, An SW et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238. doi: 10.1038/ncomms2240
  117. Hu MC, Shi M, Cho HJ. et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J Am Soc Nephrol. 2014. [Epub ahead of print] doi: 10.1681/ ASN.2014050465
  118. Song S, Gao P, Xiao H et al. Klotho suppresses cardiomyocyte apoptosis in mice with stress -induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One. 2013;8(12):e82968. doi: 10.1371/journal.pone.0082968
  119. Maekawa Y, Ohishi M, Ikushima M et al. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen -activated kinase pathway. Geriatr Gerontol Int. 2011;11:510–516. doi: 10.1111/j.1447-0594.2011.00699.x
  120. Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-Imediated senescence-associated inflammation. Nat Cell Biol. 2011;13:254–262. doi: 10.1038/ncb2167
  121. Moe SM, Radcliff JS, White KE et al. The pathophysiology of early stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders. J Bone Miner Res. 2011; 26: 2672– 2681. doi: 10.1002/jbmr.485.
  122. Moe SM. Klotho: a master regulator of cardiovascular disease? Circulation. 2012;125(18):2181-2183. doi: 10.1161/ CIRCULATIONAHA.112.104828
  123. Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243-2255. doi: 10.1161/CIRCULATIONAHA.111.053405
  124. Górriz JL, Molina P, Cerverón MJ et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol. 2015;10(4):654-666. doi: 10.2215/CJN.07450714
  125. Semba RD, Cappola AR, Sun K et al. Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011;66(7):794-800. doi: 10.1093/gerona/glr058
  126. Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/β -catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27:1757–1772. doi: 10.1002/jbmr.1630
  127. Fang Y, Ginsberg C, Sugatani T et al. Early chronic kidney disease – mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142 -150. doi: 10.1038/ki.2013.271
  128. Oliveira RB, Graciolli FG, dos Reis LM et al. Disturbances of Wnt/β-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol Dial Transplant. 2013;28(10):2510-2517. doi: 10.1093/ndt/gft234
  129. Ueland T, Otterdal K, Lekva T et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29(8):1228-1234. doi: 10.1161/ATVBAHA.109.189761
  130. Chen W, Melamed ML. Vascular calcification in predialysis CKD: common and deadly. Clin J Am Soc Nephrol. 2015; 10(4):551-553. doi: 10.2215/CJN.01940215
  131. Cheng SL, Shao JS, Behrmann A et al. Dkk1 and MSX2Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:1679–1689. doi: 10.1161/ATVBAHA.113.300647
  132. Buendia P, Montes de Oca A, Madueno JA et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015;29(1):173-181. doi: 10.1096/fj.14-249706
  133. Li M, Liu X, Zhang Y et al. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl). 2016;94(4):431-441. doi: 10.1007/s00109-015-1369-9
  134. Morena M, Jaussent I, Dupuy AM et al.Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant. 2015;30(8):1345-1356. doi: 10.1093/ndt/gfv081
  135. Kuipers AL, Miljkovic I, Carr JJ et al. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis. 2015;239(1):218-223. doi: 10.1016/j. atherosclerosis.2015.01.010
  136. Pelletier S, Confavreux CB, Haesebaert J et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int. 2015 Aug;26(8):2165-2174. doi: 10.1007/s00198-015-3127-3129
  137. Claes KJ, Viaene L, Heye S et al. Sclerostin: Another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013;98(8):3221-3228. doi: 10.1210/jc.2013-1521
  138. 100(12):4669-4676. doi: 10.1210/jc.2015-3056 201. Hampson G, Edwards S, Conroy S et al. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013;56(1):42-47. doi: 10.1016/j.bone.2013.05.010
  139. Askevold ET, Gullestad L, Nymo S et al. Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One. 2015;10(8):e0133970. doi: 10.1371/journal. pone.0133970
  140. McClung MR, Grauer A, Boonen S et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370:412–420. doi: 10.1056/NEJMoa1305224
  141. Lanzer P, Boehm M, Sorribas V et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014;35(23):1515-1525. doi: 10.1093/eurheartj/ehu163
  142. Meiting WM, Cameron RC, Cecilia M, Giachelli CM. Vascular Calcification: an Update on Mechanisms and Challenges in Treatment. Calcif Tissue Int. 2013;93(4):365-373. doi: 10.1007/ s00223-013-9712-z Сведения об авторе: