The 205 references in paper Vladimir Dobronravov A., Владимир Добронравов Александрович (2016) “Фосфат, почки, кости и сердечно-сосудистая система // Phosphate, kidneys, bones and cardiovascular system” / spz:neicon:nefr:y:2016:i:4:p:10-24

1
Kestenbaum B, Sampson JN, Rudser KD et al. Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 2005; 16: 520–528. doi: 10.1681/ ASN.2004070602
(check this in PDF content)
2
McGovern AP, De Lusignan S, Van Vlymen J et al. Serum phosphate as a risk factor for cardiovascular events in people with and without chronic kidney disease: a large community based Представления о последовательности, взаимосвязях и эффектах основных событий, связанных с дисрегуляцией обмена неорганического фосфата и развитием изменений в сердечно-сосудистой системе (комментарии см. в тексте). Pi – неорганический фосфат; СКФ – скорость клубочковой фильтрации; ГМК – гладкомышечные клетки; ПЩЖ – паращитовидные железы; рKlotho – Klotho в ПЩЖ; rKlotho – почечный пул Klotho; vKlotho – сосудистый пул Klotho; sKlotho – циркулирующий Klotho; Wnt – сигнальный путь Wingless/integration; iWnt – эндогенные ингибиторы Wnt; BMP – костные морфогенетические белки; MEPE – matrix extracellular
(check this in PDF content)
3
Kendrick J, Kestenbaum В, Chonchol М. Phosphate and Cardiovascular Disease. Adv Chronic Kidney Dis 2011; 18(2): 113–119. doi: 10.1053/j.ackd.2010.12.003
(check this in PDF content)
4
Смирнов АВ, Шилов ЕМ, Добронравов ВА. и др. Национальные рекомендации. Хроническая болезнь почек: основные принципы скрининга, диагностики, профилактики и подходы к лечению. Нефрология. 2012; 16(1): 89 -115 [Smirnov AV, Shilov EM, Dobronravov VA i dr. Nacional’nye rekomendacii. Hronicheskaya bolezn’ pochek: osnovnye principy skrininga, diagnostiki, profilaktiki i podhody k lecheniyu Nacional’nye rekomendacii. Nefrologiya 2012; 16(1): 89 -115]
(check this in PDF content)
5
Blacher J, Asmar R, Djane S et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33(5): 1111–1117. doi: 10.1161/01.HYP.33.5.1111
(check this in PDF content)
6
Hollander M, Hak AE, Koudstaal PJ et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke 2003; 34(10): 2367–2372. doi: 10.1161/01. STR.0000091393.32060.0E
(check this in PDF content)
7
Detrano R, Guerci AD, Carr JJ et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 2008; 358:1336–1345. doi: 10.1056/NEJMoa072100
(check this in PDF content)
8
Olson JC, Edmundowicz D, Becker DJ et al. Coronary calcium in adults with type 1 diabetes: a stronger correlate of clinical coronary artery disease in men than in women. Diabetes 2000; 49: 1571–1578
(check this in PDF content)
9
London GM, Guerin AP, Marchais SJ et al. Arterial media calcification in end -stage renal disease: impact on all -cause and cardiovascular mortality. Nephrol Dial Transplant 2003; 18: 1731–1740
(check this in PDF content)
10
Klassen PS, Lowrie EG, Reddan DN et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 2002; 287:1548–1555.
(check this in PDF content)
11
Hunt JL, Fairman R, Mitchell ME et al. Bone formation in carotid plaques: a clinicopathological study. Stroke 2002; 33:
(check this in PDF content)
12
4–1219 12. Edmonds ME, Morrison N, Laws JW et al. Medial arterial calcification and diabetic neuropathy. Br Med J (Clin Res Ed) 1982; 284: 928–930
(check this in PDF content)
13
Micheletti RG, Fishbein GA, Currier JS et al. Monckebe r g sclerosis revisited: a clarification of the histologic definition of Monckeberg sclerosis. Arch Pathol Lab Med 2008; 132: 43–47. doi: 10.2215/ CJN.01930408
(check this in PDF content)
14
Goodm a n WG , Goldin J, Kuizon BD et al. Coronary -artery calcification in young adults with end -stage renal disease who are undergoing dialysis. N Engl J Med 2000; 342: 1478–1483
(check this in PDF content)
15
Ix JH, De Boer IH, Peralta CA et al. Serum phosp h orus concentrations and arterial stiffness among individuals with normal kidney function to moderate kidney disease in MESA. Clin J Am Soc Nephrol 2009; 4: 609–615. doi: 10.2215/CJN.04100808
(check this in PDF content)
16
Foley RN, Collins AJ, Herzog CA et al. Serum phosph o rus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol. 2009; 20: 397–404. doi: 10.1681/ASN.2008020141
(check this in PDF content)
17
Kendrick J, Ix JH, Targher G et al. Relation of serum phosphorus levels to ankle brachial pressure index (from the Third National Health and Nutrition Examination Survey). Am J Cardiol 2010; 106(4): 564-568. doi: 10.1016/j.amjcard.2010.03.070
(check this in PDF content)
18
Li JW, Xu C, Fan Y et al. Can serum lev e ls of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276
(check this in PDF content)
19
Strozecki P, Adamowicz A, Nartowicz E et al. Parathormone, calcium, phosphorus, and left ventricular structure and function in normotensive hemodialysis patients. Ren Fail 2001; 23: 115–126
(check this in PDF content)
20
Galetta F, Cupisti A, Franzoni F et al. Changes in h e art rate variability in chronic uremic patients during ultrafiltration and hemodialysis. Blood Purif 2001; 19: 395–400
(check this in PDF content)
21
Culleton BF, Walsh M, Karenbach SW et al. Effect of frequ e nt nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 2007;298:1291–1299. doi: 10.1001/jama.298.11.1291
(check this in PDF content)
22
Yamamoto KT, Robinson-Cohen C, De Oliveira MC et al. Dietary phospho rus is associated with greater left ventricular mass. Kidney Int 2013; 83(4): 707 -714. doi: 10.1038/ki.2012.303
(check this in PDF content)
23
Slinin Y, Foley RN, Collins AJ. Calcium, phosp h orus, parathyroid hormone and cardiovascular disease in hemodialysis patients. The USRDS waves 1,3, and 4 study. J Am Soc Nephrol 2005; 16: 1788–1793
(check this in PDF content)
24
Block GA, Klassen PS, Lazarus JM et al. Mineral metabolis m , mortality, and morbidity in hemodialysis patients. J Am Soc Nephrol. 2004;15: 2208–2218
(check this in PDF content)
25
Chonchol M, Dale R, Schrier RW, Estacio R. Serum phosphorus a n d cardiovascular mortality in type 2 diabetes. Am J Med. 2009;122:380–386. doi: 10.1016/j.amjmed.2008.09.039
(check this in PDF content)
26
Tonelli M, Sacks F, Pfeffer M et al. Relation between se r um phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005; 112: 2627–2633
(check this in PDF content)
27
Dhingra R, Sullivan LM, Fox CS et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med. 2007; 167: 879–885
(check this in PDF content)
28
Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate le v els and cardiovascular disease in community-swelling adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008; 1 5 6: 556–563. doi: 10.1016/j.ahj.2008.05.016
(check this in PDF content)
29
Li JW, Xu C, Fan Y, Wang Y et al.Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS One. 2014; 9(7): e102276. doi: 10.1371/journal.pone.0102276
(check this in PDF content)
30
Palmer SC, Hayen A, Macaskill P et al. Serum levels of phosp h o rus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta–analysis. J Am Med Assoc. 2011; 305: 1119–1127. doi: 10.1001/jama.2011.308
(check this in PDF content)
31
Добронравов ВА. Современный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и klotho. Нефрология. 2011; 15(4): 11 -20 [Dobronravov VA. Sovremennyj vzglyad na patofiziologiyu vtorichnogo giperparatireoza: rol’ faktora rosta fibroblastov 23 i klotho. Nefrologiya. 2011; 15(4):11-20]
(check this in PDF content)
32
Милованова ЛЮ, Козловская ЛВ, Милованов ЮС, и др. Механизмы нарушения фосфорно-кальциевого гомеостаза в развитии сердечно-сосудистых осложнений у больных хронической болезнью почек. Роль фактора роста фибробластов-23 (fgf-23) и klotho. Терапевтический архив. 2010; 82 (6):66-72 [Milovanova LYu, Kozlovskaya LV, Milovanov YuS, i dr. Mekhanizmy narusheniya fosforno-kal’cievogo gomeostaza v razvitii serdechnososudistyh oslozhnenij u bol’nyh hronicheskoj bolezn’yu pochek. rol’ faktora rosta fibroblastov-23 (fgf-23) i klotho .Terapevticheskij arhiv. 2010; 82 (6):66-72].
(check this in PDF content)
33
Kuro -o M. Klotho, phosphate and FG F -23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013; 9 :650–660. doi: 10.1038/nrneph.2013.111
(check this in PDF content)
34
Dobronravov V, Kaukov I, Smirnov A. Dietary protein intake i s independently associated with the urinary excretion of phosphate. Kidney Res and Clin Practice. 2012; 31(2): A28-A29. doi: 10.1016/j.krcp.2012.04.374
(check this in PDF content)
35
Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end – stage renal disease in patients with chronic kidney disease. JAMA 2011;305: 2432–2439 . doi:10.1001/ jama.2011.826
(check this in PDF content)
36
Pavik I, Jaeger P, Ebner L. Secreted Klotho and FGF23 i n chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 2013; 28(2): 352359. doi: 10.1093/ndt/gfs460
(check this in PDF content)
37
Barker SL, Pastor J, Carranza D et al. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 2015 ;30(2):223-233. doi: 10.1093/ndt/gfu291.
(check this in PDF content)
38
Богданова ЕО, Галкина ОВ, Зубина ИМ, Добронравов ВА. Klotho, фактор роста фибробластов 23 и неорганический фосфат на ранних стадиях хронической болезни почек. Нефрология. 2016; 4: 53-60 [Bogdanova EO, Galkina OV, Zubina IM, Dobronravov VA. Klotho, faktor rosta fibroblastov 23 i neorganicheskij fosfat na rannih stadiyah hronicheskoj bolezni pochek. Nefrologiya. 2016; 4: 53-60]
(check this in PDF content)
39
Schiavi SC, Tang W, Bracken C et al. Npt2b deletion attenuates hyperphosphatemia associated with CKD. J Am Soc Nephrol. 2012; 23:1691–1700. doi: 10.1681/ASN.2011121213
(check this in PDF content)
40
Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012; 70:311–321. doi: 10.1111/j.1753-4887.2012.00473.x
(check this in PDF content)
41
Karp HJ, Kemi VE, Lamberg-Allardt CJ, Karkkainen MU. Mono- and polyphosphates ha ve similar effects on calcium and phosphorus metabolism in healthy young women. Eur J Nutr. 2013; 52: 991–996. doi: 10.1007/s00394-012-0406-5
(check this in PDF content)
42
London GM et al. Arterial calcifications and bo ne histomorphometry in end-stage renal disease. J Am Soc Nephrol. 2004; 15: 1943–51. doi:10.1097/01.ASN.0000129337.50739.48
(check this in PDF content)
43
Ferreira JC, Ferrari GO, Neves KR et al. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney diseaserole of sclerostin? PLoS One. 2013; 8(11):e79721. doi: 10.1371/journal.pone.0079721
(check this in PDF content)
44
Рereira RC, Juppner H, Azucena-Serrano CE et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009; 45:1161–68. doi: 10.1016/j. bone.2009.08.008
(check this in PDF content)
45
Drüeke TB, Massy ZA.Changing bone patterns with progression of chronic kidney disease. Kidney Int. 2016;89(2):289302. doi: 10.1016/j.kint.2015.12.004
(check this in PDF content)
46
Rendenbach C, Yorgan TA, Heckt T et al. Effects of extracellular phosphate on gene expression in murine osteoblasts. Calcif Tissue Int. 2014; 94(5):474-483. doi: 10.1007/s00223013-9831-6
(check this in PDF content)
47
Ito N, Findlay DM, Anderson PH et al. Extracellular phosphate modulates the effect of 1α,25-dihydroxy vitamin D3 (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2013;136:183186. doi: 10.1016/j.jsbmb.2012.09.029
(check this in PDF content)
48
Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: Preservation of osteoblast and osteocyte viability. Bone. 2011;49:50–55. doi: 10.1016/j.bone.2010.08.008
(check this in PDF content)
49
Prideaux M, Loveridge N, Pitsillides AA, Farquharson C. Extracellular matrix mineralization promotes E11/gp38 glycoprotein expression and drives osteocytic differentiation. PLoS One. 2012;7(5):e36786. doi: 10.1371/journal.pone.0036786.
(check this in PDF content)
50
Bonewald LF. The amazing osteocyte. J of Bone and Mineral Res. 2011;26(2):229–238. doi: 10.1002/jbmr.320
(check this in PDF content)
51
Plotkin LI, Mathov I, Aguirre JI et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases and ERKs. Am J Physiol Cell Physiol. 2005;289:633–C643
(check this in PDF content)
52
Tsuji K, Bandyopadhyay A, Harfe BD et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–1429
(check this in PDF content)
53
Hu H, Hilton MJ, Tu X et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development. 2005;132:49–60
(check this in PDF content)
54
Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25:629–648. doi: 10.1146/annurev.cellbio.042308.113308
(check this in PDF content)
55
Satokata I, Ma L, Ohshima H et al. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet. 2000;24:391–395
(check this in PDF content)
56
Koga T, Matsui Y, Asagiri M et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005;11:880–885.
(check this in PDF content)
57
Canalis E. Update in new anabolic therapies for osteoporosis. J Clin Endocrinol Metab. 2010;95:1496–1504. doi: 10.1210/ jc.2009-2677
(check this in PDF content)
58
Смирнов АВ, Румянцев АШ. Строение и функции костной ткани в норме и при патологии. Сообщение II. Нефрология. 2015; 19(1): 8-17 [Smirnov AV, Rumyancev ASh. Stroenie i funkcii kostnoj tkani v norme i pri patologii. Soobshchenie II. Nefrologiya. 2015; 19(1): 8-17].
(check this in PDF content)
59
Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012; 27: 1757–1772. doi: 10.1002/jbmr.1630
(check this in PDF content)
60
Rowe PS. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr. 2012; 22(1):61-86
(check this in PDF content)
61
David V, Martin A, Hedge AM. ASARM peptides: PHEXdependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol. 2011; 300(3):783-791
(check this in PDF content)
62
Evenepoel P, D’Haese P, Brandenburg V. Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int. 2015 Aug;88(2): 235-240. doi: 10.1038/ki.2015.156
(check this in PDF content)
63
Confavreux CB. Bone: from a reservoir of minerals to a regulator of energy metabolism. Kidney International. 2011; 79(121): 14–19. doi: 10.1038/ki.2011.25
(check this in PDF content)
64
Kurz P, Monier-Faugere MC, Bognar B et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 1994;46:855–861
(check this in PDF content)
65
Sage AP, Lu J, Tintut Y et al. Hyperphosphatemia -induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011;79:414–422. doi: 10.1038/ki.2010.390
(check this in PDF content)
66
Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium – phosphate deposition. Arterioscler Thromb Vasc Biol. 2009;29:761–766. doi: 10.1161/ATVBAHA.108.183384
(check this in PDF content)
67
Ewence AE, Bootman M, Roderick HL et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008;103:e28–e34. doi: 10.1161/ CIRCRESAHA.108.181305
(check this in PDF content)
68
Smith ER, Ford ML, Tomlinson LA et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012;27(5):1957 -1966. doi: 10.1093/ ndt/gfr609
(check this in PDF content)
69
Abbasian N, Burton JO, Herbert KE et al. Hyperphosphatemia, phosphoprotein phosphatases, and microparticle release in vascular endothelial cells. J Am Soc Nephrol. 2015;26: 2152–2162. doi: 10.1681/ASN.2014070642
(check this in PDF content)
70
Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake-independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333(1):39-48. doi: 10.1016/j.yexcr.2015.02.00
(check this in PDF content)
71
Steitz SA, Speer MY, Curinga G et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89:1147–1154
(check this in PDF content)
72
Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2/ Cbfa1. but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010;110:935–947. doi: 10.1002/jcb.22607
(check this in PDF content)
73
Shioi ANY, Jono S, Koyama H et al. Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Throm Vasc Biol. 1995;17:1135–1142
(check this in PDF content)
74
Chen NX, O’Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up -regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62:1724–1731
(check this in PDF content)
75
Mathew S, Tustison KS, Sugatani T et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J Am Soc Nephrol. 2008;19:1092–1105. doi: 10.1681/ASN.2007070760
(check this in PDF content)
76
Leopold JA. Vascular calcification: Mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc Med. 2015;25(4):267-274. doi: 10.1016/j.tcm.2014.10.021
(check this in PDF content)
77
Gittenberger-de Groot AC, Winter EM, Bartelings MM et al. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012;84(1):41-53. doi: 10.1016/j. diff.2012.05.002
(check this in PDF content)
78
Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110(12):1628-1645. doi: 10.1161/CIRCRESAHA.111.259960
(check this in PDF content)
79
Mill C, George SJ. Wnt signalling in smooth muscle cells and its role in cardiovascular disorders. Cardiovasc Res. 2012;95(2):233-240. doi: 10.1093/cvr/cvs141
(check this in PDF content)
80
Liu H, Fergusson MM, Castilho RM et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317:803–806
(check this in PDF content)
81
Kawakami T, Ren S, Duffield JS. Wnt signalling in kidney diseases: dual roles in renal injury and repair. J Pathol. 2013;229(2):221-231. doi: 10.1002/path.4121
(check this in PDF content)
82
Sage AP, Lu J, Tintut Y, Demer LL. Hyperphosphatemiainduced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011;79:414–422. doi: 10.1038/ ki.2010.390
(check this in PDF content)
83
Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008;199:271–277. doi: 10.1016/j.atherosclerosis.2007.11.031
(check this in PDF content)
84
Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol. 2008;40:383–408
(check this in PDF content)
85
Zhang YW, Yasui N, Ito K et al. A RUNX2/PEBP2alpha A/ CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA. 2000; 97: 10549–10554
(check this in PDF content)
86
Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004; 286: E686–E696
(check this in PDF content)
87
Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005; 97: 105–114
(check this in PDF content)
88
Lian JB, Javed A, Zaidi SK et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 2004; 14: 1–41
(check this in PDF content)
89
Baron R, Rawadi G. Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep. 2007; 5: 73–80
(check this in PDF content)
90
Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006; 26: 1423–1430
(check this in PDF content)
91
Shao JS, Cheng SL, Pingsterhaus JM et al. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005; 115: 1210–1220
(check this in PDF content)
92
Ермоленко ВМ. Ренальная остеодистрофия – начальные события. Клиническая нефролoгия. 2014; (2): 10-14 [Ermolenko VM. Renal’naya osteodistrofiya – nachal’nye sobytiya. Klinicheskaya nefrolgiya. 2014; (2): 10-14]
(check this in PDF content)
93
Weishaar RE, Kim SN, Saunders DE et al. Involvement of vitamin D3 with cardiovascular function. III. Effects on physical and morphological properties. Am J Physiol. 1990; 258: E134–E142
(check this in PDF content)
94
Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125–132
(check this in PDF content)
95
Смирнов АВ, Волков МM, Добронравов ВА. Кардиопротективные эффекты D-гормона у больных с хронической болезнью почек: обзор литературы и собственные данные. Нефрология 2009; 13(1): 30-38 [Smirnov AV, Volkov MM, Dobronravov VA. Kardioprotektivnye ehffekty D-gormona u bol’nyh s hronicheskoj bolezn’yu pochek: obzor literatury i sobstvennye dannye. Nefrologiya. 2009; 13(1): 30-38]
(check this in PDF content)
96
Nigwekar SU, Thadhani R. Vitamin D receptor activation: cardiovascular and renal implications. Kidney Int Suppl (2011). 2013; 3(5):4 27 – 430
(check this in PDF content)
97
Li YC. Vitamin D: roles in renal and cardiovascular protection. Curr Opin Nephrol Hypertens. 2012; 21(1): 72-79. doi: 10.1097/MNH.0b013e32834de4ee
(check this in PDF content)
98
Mathew S, Lund RJ, Chaudhary LR et al. Vitamin D receptor activators can protect against vascular calcification. J Am Soc Nephrol. 2008; 19: 1509–1519. doi: 10.1681/ASN.2007080902
(check this in PDF content)
99
Mizobuchi M, Finch JL, Martin DR et al. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007; 72: 709–715
(check this in PDF content)
100
Martínez-Moreno JM, Muñoz-Castañeda JR, Herencia C et al. In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation. Am J Physiol Renal Physiol. 2012; 303(8): F1136-144. doi: 10.1152/ajprenal.00684.2011
(check this in PDF content)
101
Kolek OI, Hines ER, Jones MD et al. 1alpha,25-dihydroxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol. 2005; 289: G1036–G1042
(check this in PDF content)
102
Barthel TK, Mathern DR, Whitfield GK et al. 1,25-dihydroxyvitamin D(3)/VDR-mediated induction of FGF-23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J Steroid Biochem Mol Biol. 2007; 103: 381–388
(check this in PDF content)
103
Lomashvili KA, Narisawa S, Millan JL, O’Neill WC. Vascular calcification is dependent on plasma levels of pyrophosphate. Kid Int. 2014; 85: 1351–1356. doi: 10.1038/ki.2013.521
(check this in PDF content)
104
Hruska KA, Mathew S, Lund RJ et al. The pathogenesis of vascular calcification in the chronic kidney disease mineral bone disorder: the links between bone and the vasculature. Sem Nephrol. 2009; 29:156–165. doi: 10.1016/j.semnephrol.2009.01.008
(check this in PDF content)
105
Kokot F, Pietrek J, Srokowska S et al. 25 -Hydroxyvitamin D in patients with essential hypertension. Clin Nephrol. 1981; 16: 188–192
(check this in PDF content)
106
Burgaz A, Orsini N, Larsson SC et al. Blood 25 -hydroxyvitamin D concentration and hypertension: a meta-analysis. J Hypertens. 2011; 29: 636–645. doi: 10.1097/HJH.0b013e32834320f9
(check this in PDF content)
107
Pilz S, Marz W, Wellnitz B et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross -sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008; 93: 3927–3935. doi: 10.1210/ jc.2008-0784
(check this in PDF content)
108
Wang TJ, Pencina MJ, Booth SL et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008; 117: 503–511. doi: 10.1161/CIRCULATIONAHA.107.706127
(check this in PDF content)
109
Pilz S, Iodice S, Zittermann A et al. Vitamin D status and mortality risk in CKD: a meta -analysis of prospective studies. Am J Kidney Dis. 2011; 58; 374–382. doi: 10.1053/j.ajkd.2011.03.020
(check this in PDF content)
110
Drechsler C, Verduijn M, Pilz S et al. Vitamin D status and clinical outcomes in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant. 2011; 26: 1024–1032. doi: 10.1093/ndt/gfq606
(check this in PDF content)
111
Xiang W, Kong J, Chen S et al.Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin -angiotensin systems. Am J Physiol Endocrinol Metab. 2005; 288: E125–132
(check this in PDF content)
112
Abu el Maaty MA, Gad MZ. Vitamin D deficiency and cardiovascular disease: potential mechanisms and novel perspectives. J Nutr Sci Vitaminol (Tokyo). 2013; 59(6): 479-488. doi: 10.3177/jnsv.59.479
(check this in PDF content)
113
Clemens TL, Cormier S, Eichinger A et al. Parathyroid hormone -related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets. Br J Pharmacol. 2001; 134: 1113–1136
(check this in PDF content)
114
Goettsch C, Iwata H, Aikawa E. Parathyroid hormone: critical bridge between bone metabolism and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2014; 34(7): 1333-1335. doi: 10.1161/ATVBAHA.114.303637
(check this in PDF content)
115
Macfarlane DP, Yu N, Leese GP. Subclinical and asymptomatic parathyroid disease: implications of emerging data. Lancet Diabetes Endocrinol. 2013; 1: 329–340. doi:10.1016/ S2213-8587(13)70083-4
(check this in PDF content)
116
Bosworth C, Sachs MC, Duprez D et al. Parathyroid hormone and arterial dysfunction in the multi-ethnic study of atherosclerosis. Clin Endocrinol (Oxf). 2013; 79(3): 429 -436. doi: 10.1111/cen.12163
(check this in PDF content)
117
Hagström E, Hellman P, Larsson TE et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009; 119: 2765–2771. doi: 10.1161/ CIRCULATIONAHA.108.808733
(check this in PDF content)
118
Нagström E, Michaëlsson K, Melhus H et al. Plasma– parathyroid hormone is associated with subclinical and clinical atherosclerotic disease in 2 community -based cohorts. Arterioscler Thromb Vasc Biol. 2014; 34: 1567–1573. doi: 10.1161/ ATVBAHA.113.303062
(check this in PDF content)
119
Nakayama K, Nakao K, Takatori Y et al. Long -term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis. 2013; 7: 25–33. doi: 10.2147/IJNRD.S54731
(check this in PDF content)
120
Lee M, Partridge NC. Parathyroid hormone signaling in bone and kidney. Curr Opin Nephrol Hypertens. 2009; 18(4): 298–302. doi: 10.1097/MNH.0b013e32832c2264
(check this in PDF content)
121
Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005; 37(2): 148–158
(check this in PDF content)
122
Cheng SL, Shao JS, Halstead LR et al. Activation of vascular smooth muscle parathyroid hormone receptor inhibits Wnt/beta-catenin signaling and aortic fibrosis in diabetic arteriosclerosis. Circ Res. 2010; 107: 271–282. doi: 10.1161/CIRCRESAHA.110.219899
(check this in PDF content)
123
Sebastian EM, Suva LJ, Friedman PA. Differential effects of intermittent PTH(1-34) and PTH(7-34) on bone microarchitecture and aortic calcification in experimental renal failure. Bone. 2008;43:1022–30. doi: 10.1016/j.bone.2008.07.250
(check this in PDF content)
124
Shao JS, Cheng SL, Charlton-Kachigian N et al. Teriparatide (human parathyroid hormone (1–34)) inhibits osteogenic vascular calcification in diabetic low density lipoprotein receptordeficient mice. J Biol Chem. 2003; 278: 50195–50202
(check this in PDF content)
125
Suttamanatwong S, Franceschi RT, Carlson AE, Gopalakrishnan R. Regulation of matrix Gla protein by parathyroid hormone in MC3T3-E1 osteoblast-like cells involves protein kinase A and extracellular signal-regulated kinase pathways. J Cell Biochem. 2007; 102: 496–505.
(check this in PDF content)
126
Gopalakrishnan R, Suttamanatwong S, Carlson AE, Franceschi RT. Role of matrix Gla protein in parathyroid hormone inhibition of osteoblast mineralization. Cells Tissues Organs. 2005;181:166–175
(check this in PDF content)
127
Yao Y et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010; 107: 485–494. doi: 10.1161/CIRCRESAHA.110.219071
(check this in PDF content)
128
Gutierrez OM, Wolf M, Taylor EN. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the Health Professionals Follow -up Study. Clin J Am Soc Nephrol. 2011; 6: 2871–2878. doi: 10.2215/CJN.02740311
(check this in PDF content)
129
Manghat P, Fraser WD, Wierzbicki AS et al. Fibroblast growth factor -23 is associated with C -reactive protein, serum phosphate and bone mineral density in chronic kidney disease. Osteoporos Int. 2010; 21:1853–1861. doi: 10.1007/s00198009-1142-4
(check this in PDF content)
130
Isakova T, Xie H, Yang W et al. Chronic Renal Insufficiency Cohort (CRIC) Study Group : Fibroblast growth factor 23 and risks of mortality and end -stage renal disease in patients with chronic kidney disease. JAMA. 2011; 305:2432–2439. doi: 10.1001/ jama.2011.826
(check this in PDF content)
131
Fliser D, Kollerits B, Neyer U et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007; 18: 2600–2608
(check this in PDF content)
132
Wolf M, Molnar MZ, Amaral AP et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011; 22: 956–966. doi: 10.1681/ ASN.2010080894
(check this in PDF content)
133
Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584–592. doi: 10.1056/ NEJMoa0706130
(check this in PDF content)
134
Lundberg S, Qureshi AR, Olivecrona S et al. FGF23, albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin J Am Soc Nephrol. 2012; 7: 727–734. doi: 10.2215/CJN.10331011
(check this in PDF content)
135
Ix JH, Katz R, Kestenbaum BR et al. Fibroblast growth factor – 23 and death, heart failure, and cardiovascular events in community – living individuals: CHS (Cardiovascular Health Study). J Am Coll Cardiol. 2012; 60: 200–207. doi: 10.1016/j. jacc.2012.03.040
(check this in PDF content)
136
Ärnlöv J, Carlsson AC, Sundström J et al. Higher fibroblast growth factor – 23 increases the risk of all – cause and cardiovascular mortality in the community. Kidney Int. 2013; 83: 160–166. doi: 10.1038/ki.2012.327
(check this in PDF content)
137
Ärnlöv J, Carlsson AC, Sundström J et al. Serum FGF23 and Risk of Cardiovascular Events in Relation to Mineral Metabolism and Cardiovascular Pathology. Clin J Am Soc Nephrol. 2013; 8(5): 781–786. doi: 10.2215/CJN.09570912
(check this in PDF content)
138
Jovanovich A, Ix JH, Gottdiener J et al. Fibroblast growth factor 23, left ventricular mass, and left ventricular hypertrophy in community – dwelling older adults. Atherosclerosis. 2013; 231(1): 114-119. doi: 10.1016/j.atherosclerosis.2013.09.002
(check this in PDF content)
139
Scialla JJ, Xie H, Rahman M et al.Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Fibroblast growth factor -23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014; 25(2): 349-360. doi: 10.1681/ASN.2013050465
(check this in PDF content)
140
Faul C, Amaral AP, Oskouei B et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393-4408. doi: 10.1172/JCI46122
(check this in PDF content)
141
Shibata K, Fujita S, Morita H et al.Association between circulating fibroblast growth factor 23, α-Klotho, and the left ventricular ejection fraction and left ventricular mass in cardiology inpatients. PLoS One. 2013; 8(9): e73184. doi: 10.1371/journal. pone.0073184
(check this in PDF content)
142
Seifert ME, De Las Fuentes L, Ginsberg C et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am J Nephrol. 2014; 39(5): 392 – 399. doi: 10.1159/000362251
(check this in PDF content)
143
Seiler S, Rogacev KS, Roth HJ et al. Associations of FGF23 and sKlotho with cardiovascular outcomes among patients with CKD stages 2–4. Clin J Am Soc Nephrol. 2014;9(6):1049 -1058. doi: 10.2215/CJN.07870713
(check this in PDF content)
144
Molkentin JD, Lu J, Antos C et al. A calcineurin -dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–228
(check this in PDF content)
145
Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol. 1993;55:55–75
(check this in PDF content)
146
Itoh N, Ohta H. Pathophysiological roles of FGF signaling in the heart. Front Physiol. 2013;4: 247. doi: 10.3389/ fphys.2013.0024
(check this in PDF content)
147
Kendrick J, Cheung AK, Kaufman JS et al. FGF – 23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22:1913–1922. doi: 10.1681/ ASN.2010121224
(check this in PDF content)
148
Seiler S, Reichart B, Roth D et al. FGF -23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transplant. 2010;25:3983–3989. doi: 10.1093/ndt/gfq309
(check this in PDF content)
149
Mirza MA, Larsson A, Lind L et al. Circulating fibroblast growth factor – 23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205:385–390. doi: 10.1016/j. atherosclerosis.2009.01.001
(check this in PDF content)
150
Parker BD, Schurgers LJ, Brandenburg VM et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152:640–648. doi: 10.7326/0003-4819-152-10-201005180-00004
(check this in PDF content)
151
Taylor EN, Rimm EB, Stampfer MJ et al. Plasma fibroblast growth factor 23, parathyroid hormone, phosphorus, and risk of coronary heart disease. Am Heart J. 2011;161: 956–962. doi: 10.1016/j.ahj.2011.02.012
(check this in PDF content)
152
Srivaths PR, Goldstein SL, Silverstein DM et al. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011;26: 945–951. doi: 10.1007/s00467-011-1822-0
(check this in PDF content)
153
Roos M, Lutz J, Salmhofer H et al. Relation between plasma fibroblast growth factor-23, serum fetuin-A levels and coronary artery calcification evaluated by multislice computed tomography in patients with normal kidney function. Clin Endocrinol (Oxf). 2008; 68: 660–665. doi: 10.1111/j.13652265.2007.03074.x
(check this in PDF content)
154
Kuro -o M, Matsumura Y, Aizawa H et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45–51
(check this in PDF content)
155
Kuro – o М. Phosphate and Klotho. Kidney Intl. 2011;79(121):S20–S23. doi: 10.1038/ki.2011.26
(check this in PDF content)
156
Dai B, David V, Martin A et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012; 7: e44161. doi: 10.1371/ journal.pone.0044161
(check this in PDF content)
157
Hu MC, Kuro -o M, Moe OW. Secreted klotho and chronic kidney disease. Adv Exp Med Biol. 2012;728: 126–157. doi: 10.1007/978-1-4614-0887-1_9
(check this in PDF content)
158
Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125:2243–2255. doi: 10.1007/978-1-4614-0887-1_9
(check this in PDF content)
159
Venrooij NA, Pereira RC, Tintut Y et al. FGF23 protein expression in coronary arteries is associated with impaired kidney function. Nephrol Dial Transplant. 2014;29(8):1525 -1532. doi: 10.1093/ndt/gft523
(check this in PDF content)
160
Mencke R, Harms G, Mirković K et al. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res. 2015;108(2):220-231. doi: 10.1093/cvr/cvv187
(check this in PDF content)
161
Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–136. doi: 10.1681/ASN.2009121311
(check this in PDF content)
162
Zhao Y, Banerjee S, Dey N et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011;60;1907–1916. doi: 10.2337/db10-1262
(check this in PDF content)
163
Xu Y1, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015;36(2):174-193. doi: 10.1210/ er.2013-1079
(check this in PDF content)
164
Hu MC, Shi M, Zhang J et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–136. doi: 10.1681/ASN.2009121311
(check this in PDF content)
165
Dermaku-Sopjani M, Sopjani M, Saxena A et al. Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem. 2011;28:251–258. doi: 10.1159/000331737
(check this in PDF content)
166
Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006;580:5753–5758
(check this in PDF content)
167
Nakano-Kurimoto R, Ikeda K et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol. Heart Circ Physiol. 2009;297:1673–1684. doi: 10.1152/ ajpheart.00455.2009
(check this in PDF content)
168
Kuro -o M. Klotho as a regulator of oxidative stress and senescence. Biol Chem. 2008;389(3):233–241. doi: 10.1515/ BC.2008.028
(check this in PDF content)
169
Kusaba T, Okigawa M, Matui A et al. Klotho is associated with VEGF receptor -2 and the transient receptor potential canonical -1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA. 2010;107(45):19308–19313. doi: 10.1073/ pnas.1008544107
(check this in PDF content)
170
Nagai R, Saito Y, Ohyama Y et al. Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell Mol Life Sci. 2000; 57(5): 738–746
(check this in PDF content)
171
Kurosu H, Yamamoto M, Clark JD et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309: 1829–1833
(check this in PDF content)
172
Doi S, Zou Y, Togao O et al. Klotho inhibits transforming growth factor -beta1 (TGF -beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem. 2011;286(10):8655–8665. doi: 10.1074/jbc.M110.174037
(check this in PDF content)
173
Takeshita K, Fujimori T, Kurotaki Y et al. Sinoatrial node dysfunction and early unexpected death of mice with a defect of klotho gene expression. Circulation. 2004;109(14):1776–1782
(check this in PDF content)
174
Nowak A, Friedrich B, Artunc F et al. Prognostic value and link to atrial fibrillation of soluble Klotho and FGF23 in hemodialysis patients. PLoS One. 2014;9(7):e100688. doi: 10.1371/ journal.pone.0100688
(check this in PDF content)
175
Six I, Okazaki H, Gross P et al. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014;9(4):e93423. doi: 10.1371/journal.pone.0093423
(check this in PDF content)
176
Богданова ЕО, Береснева ОН, Семенова НЮ и др. Почечная экспрессия белка αklotho ассоциирована с гипертрофией миокарда (экспериментальное исследование). Артериальная гипертензия. 2014; 20(6): 522-530 [Bogdanova EO, Beresneva ON, Semenova NYU i dr. Pochechnaya ehkspressiya belka αklotho associirovana s gipertrofiej miokarda (ehksperimental’noe issledovanie). Arterial’naya gipertenziya. 2014; 20(6): 522-530]
(check this in PDF content)
177
Xie J, Cha SK, An SW et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012;3:1238. doi: 10.1038/ncomms2240
(check this in PDF content)
178
Hu MC, Shi M, Cho HJ. et al. Klotho and Phosphate Are Modulators of Pathologic Uremic Cardiac Remodeling. J Am Soc Nephrol. 2014. [Epub ahead of print] doi: 10.1681/ ASN.2014050465
(check this in PDF content)
179
Song S, Gao P, Xiao H et al. Klotho suppresses cardiomyocyte apoptosis in mice with stress -induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One. 2013;8(12):e82968. doi: 10.1371/journal.pone.0082968
(check this in PDF content)
180
Maekawa Y, Ohishi M, Ikushima M et al. Klotho protein diminishes endothelial apoptosis and senescence via a mitogen -activated kinase pathway. Geriatr Gerontol Int. 2011;11:510–516. doi: 10.1111/j.1447-0594.2011.00699.x
(check this in PDF content)
181
Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett. 2006;580:5753–5758
(check this in PDF content)
182
Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-Imediated senescence-associated inflammation. Nat Cell Biol. 2011;13:254–262. doi: 10.1038/ncb2167
(check this in PDF content)
183
Moe SM, Radcliff JS, White KE et al. The pathophysiology of early stage chronic kidney disease-mineral bone disorder (CKD-MBD) and response to phosphate binders. J Bone Miner Res. 2011; 26: 2672– 2681. doi: 10.1002/jbmr.485.
(check this in PDF content)
184
Moe SM. Klotho: a master regulator of cardiovascular disease? Circulation. 2012;125(18):2181-2183. doi: 10.1161/ CIRCULATIONAHA.112.104828
(check this in PDF content)
185
Lim K, Lu TS, Molostvov G et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125(18):2243-2255. doi: 10.1161/CIRCULATIONAHA.111.053405
(check this in PDF content)
186
Górriz JL, Molina P, Cerverón MJ et al. Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol. 2015;10(4):654-666. doi: 10.2215/CJN.07450714
(check this in PDF content)
187
Semba RD, Cappola AR, Sun K et al. Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci. 2011;66(7):794-800. doi: 10.1093/gerona/glr058
(check this in PDF content)
188
Sabbagh Y, Graciolli FG, O’Brien S et al. Repression of osteocyte Wnt/β -catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res. 2012;27:1757–1772. doi: 10.1002/jbmr.1630
(check this in PDF content)
189
Fang Y, Ginsberg C, Sugatani T et al. Early chronic kidney disease – mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85(1):142 -150. doi: 10.1038/ki.2013.271
(check this in PDF content)
190
Oliveira RB, Graciolli FG, dos Reis LM et al. Disturbances of Wnt/β-catenin pathway and energy metabolism in early CKD: effect of phosphate binders. Nephrol Dial Transplant. 2013;28(10):2510-2517. doi: 10.1093/ndt/gft234
(check this in PDF content)
191
Ueland T, Otterdal K, Lekva T et al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29(8):1228-1234. doi: 10.1161/ATVBAHA.109.189761
(check this in PDF content)
192
Chen W, Melamed ML. Vascular calcification in predialysis CKD: common and deadly. Clin J Am Soc Nephrol. 2015; 10(4):551-553. doi: 10.2215/CJN.01940215
(check this in PDF content)
193
Cheng SL, Shao JS, Behrmann A et al. Dkk1 and MSX2Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:1679–1689. doi: 10.1161/ATVBAHA.113.300647
(check this in PDF content)
194
Buendia P, Montes de Oca A, Madueno JA et al. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J. 2015;29(1):173-181. doi: 10.1096/fj.14-249706
(check this in PDF content)
195
Li M, Liu X, Zhang Y et al. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl). 2016;94(4):431-441. doi: 10.1007/s00109-015-1369-9
(check this in PDF content)
196
Morena M, Jaussent I, Dupuy AM et al.Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant. 2015;30(8):1345-1356. doi: 10.1093/ndt/gfv081
(check this in PDF content)
197
Kuipers AL, Miljkovic I, Carr JJ et al. Association of circulating sclerostin with vascular calcification in Afro-Caribbean men. Atherosclerosis. 2015;239(1):218-223. doi: 10.1016/j. atherosclerosis.2015.01.010
(check this in PDF content)
198
Pelletier S, Confavreux CB, Haesebaert J et al. Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int. 2015 Aug;26(8):2165-2174. doi: 10.1007/s00198-015-3127-3129
(check this in PDF content)
199
Claes KJ, Viaene L, Heye S et al. Sclerostin: Another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013;98(8):3221-3228. doi: 10.1210/jc.2013-1521
(check this in PDF content)
200
Evenepoel P, Goffin E, Meijers B et al. Sclerostin Serum Levels and Vascular Calcification Progression in Prevalent Renal Transplant Recipients. J Clin Endocrinol Metab.
(check this in PDF content)
201
100(12):4669-4676. doi: 10.1210/jc.2015-3056 201. Hampson G, Edwards S, Conroy S et al. The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone. 2013;56(1):42-47. doi: 10.1016/j.bone.2013.05.010
(check this in PDF content)
202
Askevold ET, Gullestad L, Nymo S et al. Secreted Frizzled Related Protein 3 in Chronic Heart Failure: Analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). PLoS One. 2015;10(8):e0133970. doi: 10.1371/journal. pone.0133970
(check this in PDF content)
203
McClung MR, Grauer A, Boonen S et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014; 370:412–420. doi: 10.1056/NEJMoa1305224
(check this in PDF content)
204
Lanzer P, Boehm M, Sorribas V et al. Medial vascular calcification revisited: review and perspectives. Eur Heart J. 2014;35(23):1515-1525. doi: 10.1093/eurheartj/ehu163
(check this in PDF content)
205
Meiting WM, Cameron RC, Cecilia M, Giachelli CM. Vascular Calcification: an Update on Mechanisms and Challenges in Treatment. Calcif Tissue Int. 2013;93(4):365-373. doi: 10.1007/ s00223-013-9712-z Сведения об авторе:
(check this in PDF content)