The 55 references in paper O. Kuzmin B., О. Кузьмин Б. (2015) “Хроническая болезнь почек: механизмы развития и прогрессирования гипоксического гломерулосклероза и тубулоинтерстициального фиброза // Chronic kidney disease: mechanisms of hypoxic glomerulosclerosis and tubulointerstitial fibrosis development and progression” / spz:neicon:nefr:y:2015:i:4:p:6-16

1
Nangaki M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol
(check this in PDF content)
2
06; 17 (1): 17-25 2. Fine LG, Norman JT. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 2008; 74 (7): 867-872
(check this in PDF content)
3
Leong C-L, Anderson WP, O’Connor PM, Evans RG. Evidence that renal arterial-venous oxygen shunting contribes to dynamic regulation of renal oxygenation. Am J Physiol Renal Physiol 2007; 292 (8): F1726-F1733
(check this in PDF content)
4
Evans RG, Ince C, Joles JA et al. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin Exp Pharmacol Physiol 2013; 40 (2): 106-122
(check this in PDF content)
5
Evans RG, Gardiner BS, Smith DW, O ́Connor PM. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295 (5): F1259-1270
(check this in PDF content)
6
Evans RG, Goddard D, Eppel GA, O’Connor PM. Stabilty of tissue pO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption. Clin Exp Pharmacol Physiol 2011; 38 (4): 247-254
(check this in PDF content)
7
Kang DH, Kanellis J, Hogo C et al. Role of the microvascular endothelium in progressive renal disease. J Am Soc Nephrol 2002; 13 (3): 806-816
(check this in PDF content)
8
Kang D-H, Joly AH, Oh S-W et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 2001; 12 (7): 1434-1447
(check this in PDF content)
9
Kang D-H, Hughes J, Mazzalli M et al. Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 2001; 12 (7): 1448-1457
(check this in PDF content)
10
Bohle A, Mackensen-Haen S, Wehrmann M. Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res 1996; 19 (3-4): 191-195
(check this in PDF content)
11
Zhu XY, Chade AR, Rodriquez-Porcel M et al. Cortical microvascular remodelling in the stenotic kidney: role of increased oxidative stress. Arterioscl Thromb Vasc Biol 2004; 24 (8);18541859
(check this in PDF content)
12
Matsumoto M, Tanaka T, Yamamoto T et al. Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 2004; 15 (6): 1574-1571
(check this in PDF content)
13
Manotham K, Tanaka T, Matsumoto M et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 2004; 15 (5): 1277-1288
(check this in PDF content)
14
Zhang B, Chen N, Shi W et al. Peritubular capillary loss is ameliorated by ramipril or valsartan treatment. Microcirculation 2008; 15 (4): 337-348
(check this in PDF content)
15
Li N, Yi F-X, Spurrier JC et al. Production of superoxide through NADH oxidase in thick ascending limb of Henle’s loop in rat kidney. Am J Physiol Renal Physiol 2002; 282 (6): F1111-F1119
(check this in PDF content)
16
Norman ST, Stidwile R, Singer M et al. Angiotensin II blockade augments renal arterial microvascular pO2, indicating a novel potentially renoprotective action. Nephron Physiol 2003; 94 (2): 39-46
(check this in PDF content)
17
McClellan W, Aronoff SL, Bolton WK et al. The prevalence of anemia in patients with chronic kidney disease. Curr Med Res Opin 2004; 20 (9): 1501-1510
(check this in PDF content)
18
Go AS, Yang J, Ackerson LM et al. Hemoglobin level, chronic kidney disease and risk of death and hospitalization in adults with chronic heart failure: Anemia in Chronic Heart Failure: Outcomes and Recourse Utilization (ANCHOR) Study. Circulation 2006; 113 (23): 2713- 2723
(check this in PDF content)
19
Evans RG, Goddard D, Eppel GA, O’Connor PM. Factors that render the kidney susceptible to tissue hypoxia in hypoxemia. Am J Physiol Regul 2011; 300 (4): R931-R940
(check this in PDF content)
20
Brown GC. Nitric oxide and mitochondria. Front Biosci 2007; 12 (6): 1024-1033
(check this in PDF content)
21
Palm F, Nangaku M, Fasching A et al. Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia in the kidney via oxidative stress. Am J Physiol Renal Physiol 2010; 299 (2): F380-F386
(check this in PDF content)
22
Lai EY, Luo Z, Onozato ML et al. Effect of antioxidant drug tempol on renal oxygenation in mice with reduced renal mass. Am J Physiol Renal Physiol 2012; 303 (1): F64-F74
(check this in PDF content)
23
O’Connor PM, Anderson WP, Kett MM, Evans RG. Renal preglomerular arterial-venous O2 shunting is a structural antioxidant defense mechanism of the renal cortex. Clin Exp Pharnacol Physiol 2006; 33 (3): 637-641
(check this in PDF content)
24
Yoshida H, Yashiro M, Ping Liang et al. Mesangiolytic glomerulopathy in severe congestive heart failure. Kidney Int 1998; 53 (4): 880-891
(check this in PDF content)
25
Кузьмин ОБ. Механизмы развития и прогрессирования нефропатии у больных сердечной недостаточностью с хроническим кардиоренальным синдромом. Нефрология 2011; 15 (2): 20-29 [Kuzmin OB. Mechanismyi rasvitiya i progressirovaniya nefropatii u bolnyih serdechnou nedostatochnostyu s hronicheskim kardiorenalnyim sindromom. Nefrologia 2011; 15 (2): 20-29]
(check this in PDF content)
26
Nangaku M, Inagi R, Miyata T, Fujita T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp Nephrol 2008; 110 (1): e1-7
(check this in PDF content)
27
Maxwell PH. Hypoxia-inducible factor as a physiological regulator. Exp Physiol 2005; 90 (6): 791-797
(check this in PDF content)
28
Weidermann A, Bernhart WM, Klanke B et al. HIF activation protects from acute kidney injury. J Am Soc Nephrol 2008; 19 (2): 486-494
(check this in PDF content)
29
Song YR, You SJ, Lee YM et al. Activation of hypoxiainducible factor attenuates renal injury in rat remnant kidney. Nephrol Dial Transplant 2010; 25 (1): 77-85
(check this in PDF content)
30
Ding M, Cui S, Li C et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 2006; 12 (9): 1081-1087
(check this in PDF content)
31
Shodel J, Bohr D, Klanke B et al. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int 2010; 78 (9): 857-867
(check this in PDF content)
32
Li X, Kimura H, Hirota K et al. Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney Int 2005; 88 (2): 569-583
(check this in PDF content)
33
Higgins DF, Biyu MP, Akai J et al. Hypoxic induction of CTGF is directly mediated by HIF-1. Am J Physiol Renal Physiol 2004; 287 (6): F1223-F1232
(check this in PDF content)
34
Higgins DF, Kimura K, Bernhardt WM et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-tomesenchymal transition. J Clin Invest 2007; 117 (12): 3810-3820
(check this in PDF content)
35
Basu RK, Hubchak S, Hayashida T et al. Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 2011; 300 (4): F898-F905
(check this in PDF content)
36
Han WO, Zhu Q, Hu J et al. Hypoxia-inducible factor prolylhydroxylase-2 mediates TGF-β1-induced epithelial-mesenchymal transition renal tubular cells. Biochim Biophys Acta 2013; 1833 (6): 1454-1462
(check this in PDF content)
37
Subtirelu M, Gershin I, Teichman J, Tufro A. A novel model of chronic hypoxia-induced glomerulomegaly (Abstract). J Am Soc Nephrol 2005; 16: 668A
(check this in PDF content)
38
Brukamp K, Jin B, Moeller M, Haase VH. Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 2007; 293 (4): F1397-F1407
(check this in PDF content)
39
Steenhard BM, Isom K, Stroganova L et al. Deletion of von Hippel-Lindau in glomerular podocytes results in glomerular basement membrane thickening, ectopic subepithelial deposition of collagen IV, expression of neuroglobin and proteinuria. Am J Pathol 2010; 177 (1): 84-96
(check this in PDF content)
40
Neusser MA, Liendmeyer MT, Moll AG et al. Human nephrosclerosis triggers: hypoxia-related glomerulopathy. Am J Pathol 2010; 176 (2): 594-607
(check this in PDF content)
41
Veron D, Reidy KJ, Bertuccio C et al. Overexpression of VEGF-A in podocytes of adult mice causes glomerular disease. Kidney Int 2010; 77 (11): 989-999
(check this in PDF content)
42
Sahai A, Mei C, Schrier RW, Tannen RL. Mechanism of chronic hypoxia-induced renal cell growth. Kidney Int 1999; 56 (4): 1277-1281
(check this in PDF content)
43
Sodhi CP, Batlle D, Sahai A. Osteopontin mediates hypoxia-induced proliferation of cultured mesangial cells: role of PKC and p38 MAPK. Kidney Int 2000; 58 (2): 691-700
(check this in PDF content)
44
Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol 2010; 21 (2): 21-222
(check this in PDF content)
45
Burns WC, Thomas MC. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Med 2010; 12: e17.
(check this in PDF content)
46
Orphanides C, Fine LG, Norman JT. Hypoxia stimulates proximal tubular cell matrix production via TGF-β1-independent mechanism. Kidney Int 1997; 52 (3): 637-647
(check this in PDF content)
47
Manotham K, Tanaka T, Matsumoto M et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int 2004; 65 (3): 871-880
(check this in PDF content)
48
Higgins DF, Kimura K, Bernhardt WM et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-tomesenchymal transition. J Clin Invest 2007; 117 (2): 3810-3820
(check this in PDF content)
49
Швецов МЮ, Иванов АА, Попова ОП и др. Renal expression of hypoxia-induced factor-1, anemia and nephrosclerosis severity in chronic glomerulonephritis. Клин нефрол 2009; (2): 66-70 [Shvetsov MYu, Ivanov AA, Popova OP i dr. Klinicheskaya nefrologia 2009; (2): 66-70]
(check this in PDF content)
50
Sun S, Ning X, Zhang Y et al. Hypoxia-inducible factoralpha induces Twist expression in tubular epithelial cells subjected hypoxia, leading to epithelial-mesenchymal transition. Kidney Int 2009; 75 (12): 1278-1287
(check this in PDF content)
51
Burns WC, Thomas MC. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev Med 2010; 12: e17
(check this in PDF content)
52
Du R, Xia L, Liu L et al. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol Biol Cell 2014; 25 (17): 2650-2659
(check this in PDF content)
53
Chung AC, Yu X, Lan NY. MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovascular Dis 2013; 6 (1): 169-179
(check this in PDF content)
54
Du R, Sun W, Xia L et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLos One 2012; 7 (2): e30771
(check this in PDF content)
55
Галишон П, Гертиг А. Эпителиально-мезенхимальная трансформация как биомаркер почечного фиброза: готовы ли мы применить теоретические знания на практике. Нефрология 2013; 17 (4): 9-16 [Galishon P, Gertig A. Jepitelialnomezenchimalnaya transformaciya kak biomarker pochechnogo
(check this in PDF content)