The 56 references in paper P. Zolotukhin V., V. Chmykhalo K., M. Makarenko S., S. Korinfskaya A., U. Lebedeva A., O. Kuzminova N., A. Belanova A., L. Gutnikova V., A. Aleksandrova A., П. Золотухин В., В. Чмыхало К., М. Макаренко С., С. Коринфская А., Ю. Лебедева А., О. Кузьминова Н., А. Беланова А., Л. Гутникова В., А. Александрова А. (2014) “Положительный контур мочевой кислоты, гомоцистеина, NOX и XOR: нефрологические аспекты // Рositive loop of uric acid, homocysteine, and NOX and XOR enzymes: implications in nephrology” / spz:neicon:nefr:y:2014:i:5:p:16-22

1
Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Ann Rev Pharmacol Toxicol 1999; 39: 67-101
(check this in PDF content)
2
Khan NM, Sandur SK, Checker R et al. Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calciumERK1/2-Nrf2 pathway. Free Radic Biol Med 2011; 51 (1): 115-128
(check this in PDF content)
3
Nam TG. Lipid peroxidation and its toxicological implications. Toxicol Res 2011; 27 (1): 1-6
(check this in PDF content)
4
Zolotukhin P, Kozlova Y, Dovzhik A et al. Oxidative status interactome map: towards novel approaches in experiment planning, data analysis, diagnostics and therapy. Mol Biosyst 2013; 9 (8): 2085-2096
(check this in PDF content)
5
Золотухин ПВ, Александрова АА, Довжик АД и др. Интерактомика – аналитический инструмент для изучения молекулярных основ нефропатий. Нефрология 2013; (5): 9-15
(check this in PDF content)
6
Selhub J. Homocysteine metabolism. Annu Rev Nutr 1999; 19: 217-246
(check this in PDF content)
7
Uehara SK, Rosa G. Association of homocysteinemia with high concentrations of serum insulin and uric acid in Brazilian subjects with metabolic syndrome genotyped for C677T polymorphism in the methylenetetrahydrofolate reductase gene. Nutr Res 2008; 28 (11): 760-766
(check this in PDF content)
8
Bainbridge SA, von Versen-Höynck F, Roberts JM. Uric acid inhibits placental system A amino acid uptake. Placenta 2009; 30 (2): 195-200
(check this in PDF content)
9
Bainbridge SA, Deng JS, Roberts JM. Increased xanthine oxidase in the skin of preeclamptic women. Reprod Sci 2009; 16(5): 468-478
(check this in PDF content)
10
Sipkens JA, Hahn NE, Blom HJ et al. S-Adenosylhomocysteine induces apoptosis and phosphatidylserine exposure in endothelial cells independent of homocysteine. Atherosclerosis 2012; 221 (1): 48-54
(check this in PDF content)
11
Zhang C, Yi F, Xia M et al. NMDA receptor-mediated activation of NADPH oxidase and glomerulosclerosis in hyperhomocysteinemic rats. Antioxid Redox Signal 2010; 13 (7): 975-986
(check this in PDF content)
12
Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des 2005; 11 (32): 45-51
(check this in PDF content)
13
Maples KR, Mason RP. Free radical metabolite of uric acid. J Biol Chem 1988; 263 (4): 1709-1712
(check this in PDF content)
14
Cervellati C, Romani A, Seripa D et al. Oxidative balance, homocysteine, and uric acid levels in older patients with Late Onset Alzheimer’s Disease or Vascular Dementia. J Neurol Sci 2014; 337 (1-2): 156-161
(check this in PDF content)
15
Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007; 293 (2): 584-596
(check this in PDF content)
16
Cave AC, Brewer AC, Narayanapanicker A et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8 (5-6): 691-728
(check this in PDF content)
17
Deng B, Xie S, Wang J et al. Inhibition of protein kinase C β(2) prevents tumor necrosis factor-α-induced apoptosis and oxidative stress in endothelial cells: the role of NADPH oxidase subunits. J Vasc Res 2012; 49 (2): 144-159
(check this in PDF content)
18
Bolander-Gouaille C. Homocysteine Related Vitamins and Neuropsychiatric Disorders. Springer-Verlag, Paris, 2007; 150-212
(check this in PDF content)
19
Jakubowski H. Homocysteine Thiolactone: Metabolic Origin and Protein Homocysteinylation in Humans. Journal of Nutrition 2000; 130: 377–381
(check this in PDF content)
20
Vitvitsky V, Mosharov E, Tritt M et al. Redox regulation of homocysteine-dependent glutathione synthesis. Redox Rep 2003; 8 (1): 57-63
(check this in PDF content)
21
Abraham J, Cho L. The homocysteine hypothesis: Still relevant to the prevention and treatment of cardiovascular disease? Cleveland Clinic Journal of Medicine 2010; 77: 911-918
(check this in PDF content)
22
Вайнер АС, Жечев ДА, Кечин АА и др. Метаболизм фолатов и врожденные аномалии развития. Мать и Дитя в Кузбассе 2011; (45): 3-11
(check this in PDF content)
23
Schalinske K, Smazal A. Homocysteine Imbalance: a Pathological Metabolic Marker. Advances in Nutrition 2012; 3; 755–762
(check this in PDF content)
24
Kinoshita M, Numata S, Tajima A et al. Plasma total homocysteine is associated with DNA methylation in patients with schizophrenia. Epigenetics 2013; 5: 84-90
(check this in PDF content)
25
Mosharov E, Cranford MR, Banerjee R. The quantatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulphuration pathway and its regulation by redox changes. Biochemistry 2000; 39: 13005-13011
(check this in PDF content)
26
Bostom AG, Shemin D, Lapane KL et al. Hyperhomocysteinemia and traditional cardiovascular disease risk factors in endstage renal disease patients on dialysis: a case-control study. Atherosclerosis 1995; 114 (1): 93-103
(check this in PDF content)
27
Guldener C, Donker AJ, Jakobs C et al. No net renal extraction of homocysteine in fasting humans. Kidney Int 1998; 54: 166-169
(check this in PDF content)
28
Refsum H, Guttormsen AB, Fiskerstrand T, Ueland PM. Hyperhomocysteinemia in terms of steady state kinetics. Eur J Pediatrics 1998; 157: 45-49
(check this in PDF content)
29
Guttormsen AB, Ueland PM, Svarstad E, Refsum H. Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 1997; 52 (2): 495-502
(check this in PDF content)
30
Williams KT, Schalinske KL. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr 2007; 137 (2): 311-314
(check this in PDF content)
31
Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis 2011; 34 (1): 75-81
(check this in PDF content)
32
Chen NC, Yang F, Capecci LM et al. Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J 2010; 24: 2804-2817
(check this in PDF content)
33
Bao XM, Wu CF, Lu GP. Atorvastatin inhibits homocysteineinduced oxidative stress and apoptosis in endothelial progenitor cells involving Nox4 and p38MAPK. Atherosclerosis 2010; 210 (1): 114-121
(check this in PDF content)
34
Motti C, Gnasso A, Bernardini S et al. Common mutation in methylenetetrahydrofolate reductase. Correlation with homocysteine and other risk factors for vascular disease. Atherosclerosis 1998; 139 (2): 377-383
(check this in PDF content)
35
Ozkan Y, Yardim-Akaydin S, Imren E et al. Increased plasma homocysteine and allantoin levels in coronary artery disease: possible link between homocysteine and uric acid oxidation. Acta Cardiol 2006; 61 (4):432-439
(check this in PDF content)
36
Ueno N, Takeya R, Miyano K et al. The NADPH oxidase Nox3 constitutively produces superoxide in a p22phox-dependent manner: its regulation by oxidase organizers and activators. J Biol Chem 2005; 280 (24): 23328-23339
(check this in PDF content)
37
Cairns B, Kim JY, Tang XN, Yenari MA. NOX inhibitors as a therapeutic strategy for stroke and neurodegenerative disease. Curr Drug Targets 2012; 13 (2): 199-206
(check this in PDF content)
38
Vignais P.V. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 2002; 59 (9): 1428-1459
(check this in PDF content)
39
Bánfi B, Molnár G, Maturana A et al. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001; 276 (40): 37594-37601
(check this in PDF content)
40
Martyn KD, Frederick LM, von Loehneysen K et al. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 2006; 18 (1): 69-82
(check this in PDF content)
41
Manea A, Manea SA, Gafencu AV et al. AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol 2008; 28 (5): 878-885
(check this in PDF content)
42
Pendyala S, Moitra J, Kalari S et al. Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 2011; 50 (12): 1749-1759
(check this in PDF content)
43
Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 1997; 272 (49): 30952-30961
(check this in PDF content)
44
Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Radic Biol Med 1996; 21 (3): 335-348
(check this in PDF content)
45
Turpaev KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc) 2013; 78 (2): 111-126
(check this in PDF content)
46
Hirota K, Murata M, Sachi Y et al. Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem 1999; 274 (39): 27891-27897
(check this in PDF content)
47
Sipkens JA, Hahn N, van den Brand CS et al. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2013; 67 (2): 341-352
(check this in PDF content)
48
Kim YC, Yamaguchi Y, Kondo N et al. Thioredoxin-dependent redox regulation of the antioxidant responsive element (ARE) in electrophile response. Oncogene 2003; 22 (12): 1860-1865
(check this in PDF content)
49
Iwasaki K, Mackenzie EL, Hailemariam K et al. Heminmediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol 2006; 26 (7): 2845-2856
(check this in PDF content)
50
Hirota K, Matsui M, Iwata S et al. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 1997; 94 (8): 3633-3638
(check this in PDF content)
51
Yu M, Li H, Liu Q et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal 2011; 23 (5): 883-892
(check this in PDF content)
52
Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 2007; 35 (21): 7074-7086
(check this in PDF content)
53
Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 2000; 267 (20): 6102-6109
(check this in PDF content)
54
UniProt [электронный ресурс]: www.uniprot.org (Дата обращения – 7 апреля 2014)
(check this in PDF content)
55
Lipkowitz MS. Regulation of uric acid excretion by the kidney. Curr Rheumatol Rep 2012; 14 (2): 179-188
(check this in PDF content)
56
Lee VW, Wang YM, Wang YP et al. Regulatory immune cells in kidney disease. Am J Physiol Renal Physiol 2008; 295 (2): F335-F342 Авторы заявляют об отсутствии конфликта интересов.
(check this in PDF content)