The 122 references in paper E. KONYUCH A., A. NAUMOV V., N. PARAMONOVA S., Е. КОНЮХ А., А. НАУМОВ В., Н. ПАРАМОНОВА С. (2011) “ГОМОЦИСТЕИН: РОЛЬ В РАЗВИТИИ И ПРОГРЕССИРОВАНИИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК // HOMOCYSTEINE: ROLE IN THE DEVELOPMENT AND PROGRESSION OF CHRONIC RENAL DISEASE” / spz:neicon:nefr:y:2011:i:3:p:18-25

1
Vanholder R, Massy Z, Argiles A et al. Chronic kidney disease as cause of cardiovascularmorbidity and mortality. Nephrol Dial Transplant 2005; 20: 1048–1056
(check this in PDF content)
2
Баранов АА, Сергеева ТВ. Достижения и перспективы развития нефрологии детского возраста. Вопросы современной педиатрии 2007; 6: 20–24
(check this in PDF content)
3
Fogo AB. Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 2007; 22: 2011–2022
(check this in PDF content)
4
Mackenzie HS, Brenner BM. Current strategies for retarding progression of renal disease. Am J Kidney Dis 1998; 31: 161–170
(check this in PDF content)
5
Shishehbor MH, Oliveira LP, Lauer MS, et al. Emerging cardiovascular risk factors that account for a significant portion of attributable mortality risk in chronic kidney disease. Am J Cardiol 2008; 101: 1741–1746
(check this in PDF content)
6
Schroecksnadel K, Frick B, Wirleitner B, et al. Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 2004; 5(1): 107–118
(check this in PDF content)
7
Williams KT, Schalinske KL. Homocysteine metabolism and its relation to health and disease. Biofactors 2010; 36(1): 19–24
(check this in PDF content)
8
Наумов АВ. Роль нарушений процессов метилирования и обмена метионина в патогенезе заболеваний человека. Журн Гроднен гос мед ун-та 2007; 1: 4–7
(check this in PDF content)
9
Naumov AV, Pakulnevich YF, Doroshenko EM et al. Hyperhomocysteinaemia at various forms of pancreatitis. Acta Biochimica Polonica 2008; 55(3): 191
(check this in PDF content)
10
Naumоv AV, Matveenko PA, Doroshenko EM et al. The level of total plasma homocysteine in adolescents from rural area of Belarus and its correction. Acta Biochimica Polonica 2009; 56(1.3): 198
(check this in PDF content)
11
Minniti G, Cerone R, Piana A, et al. Plasma and serum total homocysteine concentrations in pediatric patients, evaluated by high-performance liquid chromatography with fluorescence. Clin Chem Lab Med 2000; 38: 675–676
(check this in PDF content)
12
Ueland PM, Bjorke Monsen A-L. Total homocysteine is making its way into pediatric laboratory diagnostics. Eur J Clin Invest 2001; 31(11): 928–930
(check this in PDF content)
13
Aguilar B, Rojas JC, Collados MT. Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolysis 2004; 18(2): 75–87
(check this in PDF content)
14
Robinson K. Data presented at: 69th Scientific Sessions of the American Heart Assosiation; November 12, 1996; New Orleans, La
(check this in PDF content)
15
Плоцкий АР, Егорова ТЮ, Наумов АВ. Возможности прогнозирования и диагностики врождённых пороков развития плода на основе определения уровня гомоцистеина в плазме крови беременных женщин. Журн Гроднен гос мед ун-та 2009; 1: 56–59
(check this in PDF content)
16
Плоцкий АР, Егорова ТЮ, Наумов АВ, и др. Коррекция уровня гомоцистеина в плазме крови женщин. Рецепт 2008; 59(3): 45–50
(check this in PDF content)
17
Ueland PM. Homocysteine species as components of plasma redox thiol status. Clin Chem 1995;41(3): 340–342
(check this in PDF content)
18
Mudd SH, Finkelstein JD, Refsum H et al. Homocysteine and its disulfide derivatives: a suggested consensus terminology. Arterioscler Thromb Vasc Biol 2000; 20(7): 1704–1706
(check this in PDF content)
19
Glowacki R, Jakubowski H. Cross-talk between Cys34 and lysine residues in human serum albumin revealed by Nhomocysteinylation. J Biol Chem 2004; 279(12): 10864–10871
(check this in PDF content)
20
Friedman AN, Bostom AG, Selhub J et al. The kidney and homocysteine metabolism. J Am Soc Nephrol 2001; 12:
(check this in PDF content)
21
1–2189 21. Hultberg B, Andersson A, Isaksson A. Metabolism of homocysteine, its relation to the other cellular thiols and its mechanism of cell damage in a cell culture line (human histiocytic cell line U-937). Biochim Biophys Acta 1995; 1269(1): 6–12
(check this in PDF content)
22
Bjorke-Monsen AL, Ueland PM, Vollset SE et al. Determinants of cobalamin status in newborns. Pediatrics 2001; 108: 624–630
(check this in PDF content)
23
Delvin EE, Rozen R, Merouani A et al. Influence of methylenetetrahydrofolate reductase genotype, age, vitamine B12 and folate status on plasma homocysteine in children. Am J Clin Nutr 2000; 72: 1469–1473
(check this in PDF content)
24
Prathapasinghe GA, Siow YL, Xu Z. Inhibition of cystathionine-beta-synthase activity during renal ischemiareperfusion: role of pH and nitric oxide. Am J Physiol Renal Physiol 2008; 295(4): F912–922
(check this in PDF content)
25
Woo CW, Siow YL, Pierce GN et al. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 2005; 288(5): E1002–1010
(check this in PDF content)
26
Clarke R, Refsum H, Birks J, et al. Screening for vitamin B-12 and folate deficiency in older persons. Am J Clin Nutr 2003; 77(5): 1241–1247
(check this in PDF content)
27
Ames BN, Elson-Schwab I, Silver EA. High-dose vitamin therapy stimulates variant enzymes with decreased coenzyme binding affinity (increased K(m)): relevance to genetic disease and polymorphisms. Am J Clin Nutr 2002; 75(4): 616–658
(check this in PDF content)
28
Obeid R, Herrmann W. Homocysteine and lipids: Sadenosyl methionine as a key intermediate. FEBS Lett 2009; 583(8): 1215-1225
(check this in PDF content)
29
Swanson DA, Liu ML, Baker PJ et al. Targeted disruption of the methionine synthase gene in mice. Mol Cell Biol 2001; 21(4): 1058–1065
(check this in PDF content)
30
Brustolin S, Giugliani R, Felix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 2010; 43: 1–5
(check this in PDF content)
31
Francis ME, Eggers PW, Hostetter TH, et al. Association between serum homocysteine and markers of impaired kidney function in adults in the United States. Kidney Int 2004; 66(1): 303–312
(check this in PDF content)
32
Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990; 1(5): 228–237
(check this in PDF content)
33
Hoekstra M, Haagsma CJ, Doelman CJ, et al. Intermittent rises in plasma homocysteine in patients with rheumatoid arthritis treated with higher dose methotrexate. Ann Rheum Dis 2005; 64(1): 141–143
(check this in PDF content)
34
Lawrence de Koning AB, Werstuck GH, Zhou J, et al. Hyperhomocysteinemia and its role in the development of atherosclerosis. Clin Biochem 2003; 36(6): 431–441
(check this in PDF content)
35
McCully KS. Chemical pathology of homocysteine. IV. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation. Ann Clin Lab Sci 2009; 39(3): 219–232
(check this in PDF content)
36
Massy ZA, Ceballos I, Chadefaux-Vekemens B, еt al. Homocyst(e)ine, oxidative stress, and endothelium function in uremic patients. Kidney Int Suppl 2001; 78: S243–S245
(check this in PDF content)
37
Goligorsky MS. Frontiers in Nephrology: Viewing the Kidney through the Heart-Endothelial Dysfunction in Chronic Kidney Disease. J Am Soc Nephrol 2007; 18: 2833–2835
(check this in PDF content)
38
Bostom A, Brosnan JT, Hall B et al. Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 1995; 116(1): 59–62
(check this in PDF content)
39
Ninomiya T, Kiyohara Y, Kubo M et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis 2004; 44(3): 437–445
(check this in PDF content)
40
Taha S, Azzi A, Ozer NK. Homocysteine induces DNA synthesis and proliferation of vascular smooth muscle cells by a hydrogen peroxide–independent mechanism. Antioxid Redox Signal 199l; 1(3): 365–369
(check this in PDF content)
41
Tsai JC, Wang H, Perrella MA, et al. Induction of cyclin A gene expression by homocysteine in vascular smooth muscle cells. J Clin Invest 1996; 97(1): 146–153
(check this in PDF content)
42
Majors AK, Sengupta S, Jacobsen DW, et al. Upregulation of smooth muscle cell collagen production by homocysteine–insight into the pathogenesis of homocystinuria. Mol Genet Metab 2002; 76(2): 92–99
(check this in PDF content)
43
Prichard S. Risk factors for coronary artery disease in patients with renal failure. Am J Med Sci 2003; 325(4): 209–213
(check this in PDF content)
44
Sierakowska-Fijaіek A, Baj Z, Kaczmarek P, et al. Estimation of relation between homocysteine concentration and selected lipid parameters and adhesion molecules concentration in children with atherosclerosis risk factors. Pol Merkur Lekarski 2008; 25(148): 356–360
(check this in PDF content)
45
Liang JQ, Wu YL, Xu HB et al. The endothelium injuries caused by homocysteine and treatmental effects of Tongxinluo powder. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2008; 24(1): 66–70
(check this in PDF content)
46
Weiss N, Keller C, Hoffmann U, et al. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002; 7(3): 227–239
(check this in PDF content)
47
Outinen PA, Sood SK, Pfeifer SI, et al. Homocysteine– induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood 1999; 94(3): 959–967
(check this in PDF content)
48
Lee ME, Wang H. Homocysteine and hypomethylation. A novel link to vascular disease. Trends Cardiovasc Med 1999; 9(1-2): 49–54
(check this in PDF content)
49
Tyagi SC, Smiley LM, Mujumdar VS. Homocyst(e)ine impairs endocardial endothelial function. Can J Physiol Pharmacol 1999; 77(12): 950–957
(check this in PDF content)
50
Upchurch GR, Welch GN, Fabian AJ, et al. Stimulation of endothelial nitric oxide production by homocyst(e)ine. Atherosclerosis 1997; 132: 177–185
(check this in PDF content)
51
Tyagi N, Gillespie W, Vacek JC, et al. Activation of GABA–A receptor ameliorates homocysteine-induced MMP-9 activation by ERK pathway. J Cell Physiol 2009; 220: 57–266
(check this in PDF content)
52
Tawakol A, Omland T, Gerhard M, еt al. Hyperhomocysteinemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997; 95: 1119–1121
(check this in PDF content)
53
Buccianti G, Raselli S, Baragetti I, et al. 5methyltetrahydrofolate restores endothelial function in uraemic patients on convective haemodialysis. Nephrol Dial Transplant 2002; 17(5): 857–864
(check this in PDF content)
54
Upchurch GR, Welch GN, Randev N, et al. The effect of homocysteine on endothelial nitric oxide production. FASEB J 1995; 9: A876. Abstract
(check this in PDF content)
55
Huang RF, Hsu YC, Lin HL, et al. Folate depletion and elevated plasma homocysteine promote oxidative stress in rat livers. J Nutr 2001; 131(1): 33–38
(check this in PDF content)
56
Cattell V. Nitric oxide and glomerulonephritis. Kidney Int 2002; 61(3): 816–821
(check this in PDF content)
57
Ishizuka S, Cunard R, Poucell-Hatton S, et al. Agmatine inhibits cell proliferation and improves renal function in antithy-1 glomerulonephritis. J Am Soc Nephrol 2000; 11(12): 2256– 2264
(check this in PDF content)
58
Stoessel A, Paliege A, Theilig F, et al. Indolent course of tubulointerstitial disease in a mouse model of subpressor, lowdose nitric oxide synthase inhibition. Am J Physiol Renal Physiol 2008; 295(3): F717–725
(check this in PDF content)
59
O’Riordan E, Mendelev N, Patschan S, et al. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 2007; 292(1): H285–294
(check this in PDF content)
60
Addabbo F, Ratliff B, Park HC, et al. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 2009; 174(1): 34–43
(check this in PDF content)
61
Antoniades C, Shirodaria C, Leeson P, et al. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J 2009; 30(9):1142–1150
(check this in PDF content)
62
Stühlinger MC, Tsao PS, Her JH, Kimoto M et al. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 2001; 104(21): 2569-2575
(check this in PDF content)
63
Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl 2003; 4(4): 61–65
(check this in PDF content)
64
Qureshi I, Chen H, Brown AT, et al. Homocysteineinduced vascular dysregulation is mediated by the NMDA receptor. Vasc Med 2005; 10(3): 215–223
(check this in PDF content)
65
Onozato ML, Tojo A, Leiper J, et al. Expression of NG, NG-dimethylarginine dimethylaminohydrolase and protein arginine N-methyltransferase isoforms in diabetic rat kidney: effects of angiotensin II receptor blockers. Diabetes 2008; 57(1): 172–180
(check this in PDF content)
66
Dayal S, Rodionov RN, Arning E, et al. Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 2008; 295(2): H816–H825
(check this in PDF content)
67
Ueda S, Yamagishi S, Matsumoto Y, et al. Asymmetric dimethylarginine (ADMA) is a novel emerging risk factor for cardiovascular disease and the development of renal injury in chronic kidney disease. Clin Exp Nephrol 2007; 11(2): 115–121
(check this in PDF content)
68
Nangaku M, Nishi H, Miyata T. Role of chronic hypoxia and hypoxia inducible factor in kidney disease. Chin Med J (Engl) 2008; 121(3): 257–264
(check this in PDF content)
69
Fu YF, Xiong Y, Guo Z. A reduction of endogenous asymmetric dimethylarginine contributes to the effect of captopril on endothelial dysfunction induced by homocysteine in rats. Eur J Pharmacol 2005; 508(1–3): 167–175
(check this in PDF content)
70
Notsu Y, Nabika T, Bokura H, et al. Evaluation of asymmetric dimethylarginine and homocysteine in microangiopathy-related cerebral damage. Am J Hypertens 2009; 22(3): 257–262
(check this in PDF content)
71
Pexa A, Boeger RH, Henle T, et al. Effects of moderate hyperhomocysteinaemia induced by 4 weeks methionineenriched diet on metabolite profile and mesenteric artery function in rats. Br J Nutr 2008; 99(5): 993–999
(check this in PDF content)
72
Подчерняева НС, Вашакмадзе НС, Меграбян МФ. Факторы риска развития тромботических осложнений при системной красной волчанке и дерматомиозите у детей. Российский педиатрический журнал 2006; 5: 30–34
(check this in PDF content)
73
Khajuria A, Houston DS. Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis. Blood 2000; 96(3): 966–972
(check this in PDF content)
74
Rodgers GM, Kane WH. Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator. J Clin Invest 1986; 77(6): 1909–1916
(check this in PDF content)
75
Stein J, Mc Bride PE. Hyperhomocysteinemia and atherosclerotic vascular disease. Arch Intern Med 1998; 158(12): 1301–1306
(check this in PDF content)
76
Lentz SR, Salder JE Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine. J Clin Invest 1991; 88: 1906–1914
(check this in PDF content)
77
Himmelfarb J, Stanvinkel P, Ikizler TA, et al. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002; 62: 1524–1538
(check this in PDF content)
78
Terawaki H, Yoshimura K, Hasegawa T, et al. Oxidative stress in enhanced in correlation with renal dysfunction: examination with the redox state of albumin. Kidney Int 2004; 66: 1988–1993
(check this in PDF content)
79
Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 2004; 13: 93–99
(check this in PDF content)
80
Tyagi N, Ovechkin AV, Lominadze D, et al. Mitochondrial mechanism of microvascular endothelial cells apoptosis in hyperhomocysteinemia. J Cell Biochem 2006; 98(5): 1150–1162
(check this in PDF content)
81
Au–Yeung KK, Woo CW, Sung FL, et al. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 2004; 94(1): 28– 36
(check this in PDF content)
82
Faraci FM, Lentz SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 2004; 35(2): 345–347
(check this in PDF content)
83
Garaliene V. The main determinants of endothelial dysfunction. Medicina (Kaunas) 2006; 42(5): 362–369
(check this in PDF content)
84
Fischer PA, Dominguez GN, Cuniberti LA, et al. Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol 2003; 14(3): 653–660
(check this in PDF content)
85
Eberhardt RT, Forgione MA, Cap A, et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000; 106(4): 483–491
(check this in PDF content)
86
Weiss N, Keller C, Hoffmann U, et al. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc Med 2002; 7(3): 227–239
(check this in PDF content)
87
Lang D, Kredan MB, Moat SJ, et al. Homocysteineinduced inhibition of endothelium-dependent relaxation in rabbit aorta: role for superoxide anions. Arterioscler Thromb Vasc Biol 2000; 20(2): 422–427
(check this in PDF content)
88
Ricci C, Pastukh V, Leonard J, et al. Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 2008; 294(2): C413–422
(check this in PDF content)
89
Vartanian V, Lowell B, Minko IG, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci USA 2006; 103(6): 1864–1869
(check this in PDF content)
90
Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 2003; 57(1): 147– 157
(check this in PDF content)
91
Lewis W, Day BJ, Kohler JJ, et al. Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 2007; 87(4): 326–335
(check this in PDF content)
92
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67(21): 3573–3587
(check this in PDF content)
93
Duthie SJ, Grant G, Pirie LP, et al. Folate deficiency alters hepatic and colon MGMT and OGG-1 DNA repair protein expression in rats but has no effect on genome-wide DNA methylation. Cancer Prev Res (Phila) 2010; 3(1): 92–100
(check this in PDF content)
94
Bostom AG, Kronenberg F, Jacques PF, et al. Proteinuria and plasma total homocysteine levels in chronic renal disease patients with a normal range serum creatinine: critical impact of true glomerular filtration rate. Atherosclerosis 2001; 159(1): 219–223
(check this in PDF content)
95
Смирнов АВ, Добронравов ВА, Голубев РВ и др. Распространенность гипергомоцистеинемии в зависимости от стадии хронической болезни почек Нефрология 2005; 9(2): 48–52
(check this in PDF content)
96
Perna AF, Ingrosso D, Lombardi C, et al. Homocysteine in uremia. Am J Kidney Dis 2003; 41(3, S1.): 123–126
(check this in PDF content)
97
Kumagai H, Katoh S. Hirosawa K. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int 2002; 62: 1219–1228
(check this in PDF content)
98
Hultberg B, Andersson A, Sterner G. Plasma homocysteine in renal failure. Clin Nephrol 1993; 40(4): 230– 235
(check this in PDF content)
99
Fowler B. The folat cycle and disease in humans. Kidney Int 2001; 59(S 78): 221–229
(check this in PDF content)
100
Guldener C, Donker AJM, Jacobs C et al. No net renal extraction of homocysteine in fasting humans. Kidney Int 1998; 54(1): 166–169
(check this in PDF content)
101
Hustad S, Ueland PM, Vollset SE, et al. Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clin Chem 2000; 46(8 Pt1): 1065–1071
(check this in PDF content)
102
Schroecksnadel K, Frick B, Wirleitner B, et al. Moderate hyperhomocysteinemia and immune activation. Curr Pharm Biotechnol 2004; 5(1): 107–118
(check this in PDF content)
103
Kluijtmans LA, Young IS, Boreham CA, et al. Genetic and nutritional factors contributing to hyperhomocysteinemia in young adults. Blood 2003; 101(7): 2483–2488
(check this in PDF content)
104
Craig SA. Betaine in human nutrition. Am J Clin Nutr 2004; 80(3): 539–549
(check this in PDF content)
105
Schwab U, Turrunen A, Toppinen L, et al. Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am J Clin Nutr 2002; 76(5): 961–967
(check this in PDF content)
106
Steenge GR, Verhoef P, Katan MB. Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr 2003; 133(5): 1291–1295
(check this in PDF content)
107
Olthof MR, van Vliet T, Boelsma E, et al. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr 2003; 133(12): 4135–4138
(check this in PDF content)
108
Yaghmai R, Kashani AH, Geraghty MT, et al. Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am J Med Genet 2002; 108(1): 57–63
(check this in PDF content)
109
Collinsova M, Strakova J, Jiracek J, et al. Inhibition of betaine–homocysteine S-methyltransferase causes hyperhomocysteinemia in mice. J Nutr 2006; 136(6): 1493–1497
(check this in PDF content)
110
Strakova J, Williams KT, Gupta S, et al. Dietary intake of S-(alpha–carboxybutyl)-DL-homocysteine induces hyperhomocysteinemia in rats. Nutr Res 2010; 30(7): 492–500
(check this in PDF content)
111
Poge U, Look M, Gerhardt T, et al. Intravenous treatment of hyperhomocysteinemia in patients on chronic hemodialysis. A pilot study. Renal Failure 2004; 26(6): 703–708
(check this in PDF content)
112
Brattstrum L. Vitamins as homocysteine-lowering agents. J Nutr 1996; 126(4 Suppl): 1276S–1280S
(check this in PDF content)
113
Cattaneo M. Hyperhomocysteinemia: an important risk factor for cardiovascular disease? Potentially,yes. J Thromb Haemost 2003; 1: 1878–1879
(check this in PDF content)
114
Chambers JC, Ueland PM, Obeid OA, et al. Improved vascular endothelial function after oral B vitamins: An effect mediated through reduced concentrations of free plasma homocysteine. Circulation 2000; 102(20): 2479–2483
(check this in PDF content)
115
Stam F, van Guldener C. Effect of folic acid on methionine and homocysteine metabolism in end-stage renal disease. Kidney Int 2005; 67(1): 259–264
(check this in PDF content)
116
McCully KS. Homocysteine, vitamins, and vascular disease prevention. Am J Clin Nutr 2007; 86: 1563S–1568S
(check this in PDF content)
117
Samman S, Sivarajah G, Man JC, et al. A mixed fruit and vegetable concentrate increases plasma antioxidant vitamins and folate and lowers plasma homocysteine in men. J Nutr 2003; 133(7): 2188–2193
(check this in PDF content)
118
Stroes ESG, van Faassen EE, Martasek P, et al. Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res 2000; 86(11): 1129–1134
(check this in PDF content)
119
Sakabe K, Fukuda N, Wakayama K, et al. Lipidaltering changes and pleiotropic effects of atorvastatin in patients with hypercholesterolemia. Am J Cardiol 2004; 94: 497–500
(check this in PDF content)
120
Zhang B, Noda K, Matsunaga A, et al. A comparative crossover study of the effects of fluvastatin and pravastatin (FP-COS) on circulating autoantibodies to oxidized LDL in patients with hypercholesterolemia. J Atheroscler Thromb 2005; 12: 41–47
(check this in PDF content)
121
Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 2005; 353: 238–248
(check this in PDF content)
122
Nanayakkara WB, van Guldener C, ter Wee PM, et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease results from the
(check this in PDF content)