The 78 references in paper Ю. Головин И., А. Жигачев О., М. Ефремова В., А. Мажуга Г., А. Кабанов В., Н. Клячко Л. (2018) “ПУТИ И МЕТОДЫ УПРАВЛЕНИЯ БИОМОЛЕКУЛЯРНЫМИ СТРУКТУРАМИ С ПОМОЩЬЮ МАГНИТНЫХ НАНОЧАСТИЦ, АКТИВИРУЕМЫХ ПЕРЕМЕННЫМ МАГНИТНЫМ ПОЛЕМ” / spz:neicon:nanorf:y:2018:i:6:p:82-90

1
Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles // J. Biosci. Bioeng.
(check this in PDF content)
2
05. V. 100. No 1. P. 1–11. 2. Lu A.H., Salabas E.E., Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application // Angew. Chem. Int. Edit. 2007. V. 46. No 8. P. 1222–1244.
(check this in PDF content)
3
Reddy L.H., Arias J.L., Nicolas J., Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications // Chem. Rev. 2012. V. 112. No 11. P. 5818–5878.
(check this in PDF content)
4
Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D Appl. Phys. 2003. V. 36. No 13. R167.
(check this in PDF content)
5
Erb R.M., Martin J.J., Soheilian R., Pan C., Barber J.R. Actuating Soft Matter with Magnetic Torque // Adv. Funct. Mater. 2016. V. 26. No 22. P. 3859–3880.
(check this in PDF content)
6
Hauser A.K., Wydra R.J., Stocke N.A., Anderson K.W., Hilt J.Z. Magnetic nanoparticles and nanocomposites for remote controlled therapies // J. Control. Release. 2015. V. 219. P. 76–94.
(check this in PDF content)
7
Sneider A., VanDyke D., Paliwal S., Rai P. Remotely triggered nano-theranostics for cancer applications // Nanotheranostics. 2017. V. 1. No 1. P. 1–22.
(check this in PDF content)
8
Muthu M.S., Leong D.T., Mei L., Feng S.S. Nanotheranostics- application and further development of nanomedicine strategies for advanced theranostics // Theranostics. 2014. V. 4. No 6. P. 660.
(check this in PDF content)
9
Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master А.M., Sokolsky M., Kabanov A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields // J. Control. Release. 2015. V. 219. P. 43–60.
(check this in PDF content)
10
Golovin Y.I., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine // J. Nanopart. Res. 2017. V. 19. No 2. P. 63.
(check this in PDF content)
11
Gilchrist R.K., Medal R., Shorey W.D., Hanselman R.C., Parrott J.C., Taylor C.B. Selective inductive heating of lymph nodes // Ann. Surg. 1957. V. 146. No 4. P. 596.
(check this in PDF content)
12
Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies // Chem. Rev. 2016. V. 116. No 9. P. 5338–5431.
(check this in PDF content)
13
Dutz S, Hergt R. Magnetic particle hyperthermia — a promising tumour therapy? // Nanotechnology. 2014. V. 25. P. 452001.
(check this in PDF content)
14
Rabin Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? // Int. J. Hyperther. 2002. V. 18. No 3. P. 194–202.
(check this in PDF content)
15
Keblinski P, Cahill D.G., Bodapati A., Sullivan C.R., Taton T.A. Limits of localized heating by electromagnetically excited nanoparticles // J. Appl. Phys. 2006. V. 100. No 5. P. 054305.
(check this in PDF content)
16
Hergt R., Andrä W. Magnetic hyperthermia and thermoablation. In: Andrä W, Nowak H. (eds) Magnetism in medicine: a handbook, Second ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. P. 550–570.
(check this in PDF content)
17
СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах». Постановление Главного государственного санитарного врача РФ от 21.06.2016 No 81.
(check this in PDF content)
18
Extremely low frequency fields. Environmental Health Criteria 238. World Health Organization, 2007. 543 p. http://www.who. int/peh-emf/publications/Complet_DEC_2007.pdf
(check this in PDF content)
19
Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme // J. Neurooncol. 2011. V. 103. No 2. P. 317–324.
(check this in PDF content)
20
Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag, P.M. Hyperthermia in combined treatment of cancer // Lancet Oncol. 2002. V. 3. No 8. P. 487–497.
(check this in PDF content)
21
Datta N.R., Ordóñez S.G., Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future // Cancer Treat. Rev. 2015. V. 41. No 9. P. 742–753.
(check this in PDF content)
22
Creixell M., Bohorquez A.C., Torres-Lugo M., Rinaldi C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise // ACS Nano. 2011. V. 5. No 9. P. 7124–7129.
(check this in PDF content)
23
Asin L., Ibarra M.R., Tres A., Goya G.F. Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration // Pharm. Res. 2012. V. 29. No 5. P. 1319–1327.
(check this in PDF content)
24
Dobson J. Magnetic nanoparticles for drug delivery // Drug Develop. Res. 2006. V. 67. No 1. P. 55–60.
(check this in PDF content)
25
Dobson J. Remote control of cellular behaviour with magnetic nanoparticles // Nat. Nanotechnol. 2008. V. 3. No 3. P. 139–143.
(check this in PDF content)
26
Chen J., Fabry B., Schiffrin E. L., Wang N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells // Am. J. Physiol., Cell Ph. 2001. V. 280. No 6. P. 1475–1484.
(check this in PDF content)
27
Domenech M., Marrero-Berrios I., Torres-Lugo M., Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields // ACS Nano. 2013. V. 7. No 6. P. 5091–5101.
(check this in PDF content)
28
Kanczler J.M., Sur H.S., Magnay J., Green D., Oreffo R.O., Dobson J.P., El Haj A.J. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology // Tissue Eng. Pt. A. 2010. V. 16. P. 3241–3250.
(check this in PDF content)
29
Hu B., El Haj A.J., Dobson J. Receptor-targeted, magneto-mechanical stimulation of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells // Int. J. Mol. Sci. 2013. V. 14. No 9. P. 19276–19293.
(check this in PDF content)
30
Hu B., Dobson J., El Haj A.J. Control of Smooth Muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation // Nanomed. Nanotechnol. 2014. V. 10. P. 45–55.
(check this in PDF content)
31
Kim D.H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction // Nat. Mater. 2010. V. 9. No 2. P. 165.
(check this in PDF content)
32
Master A.M., Williams P.N., Pothayee N., Pothayee N., Zhang R., Vishwasrao H.M., Golovin Y.I., Riffle J.S., Sokolsky M., Kabanov A.V. Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption // Sci. Rep.-UK. 2016. V. 6. P. 33560.
(check this in PDF content)
33
Nappini S., Bonini M., Bombelli F.B., Pineider F., Sangregorio C., Baglioni P., Nordèn B. Controlled drug release under a low frequency magnetic field: effect of the citrate coating on magnetoliposomes stability // Soft Matter. 2011. V. 7. P. 1025–1037.
(check this in PDF content)
34
Klyachko N.L., SokolskyPapkov M., Pothayee N., Efremova M.V., Gulin D.A., Pothayee N., Kuznetsov A.A., Majouga A.G., Riffle J.S., Golovin Y.I., Kabanov, A.V. Changing the Enzyme Reaction Rate in Magnetic Nanosuspensions by a Non‐Heating Magnetic Field // Angew. Chem. Int. Edit. 2012. V. 51. No 48. P. 12016–12019.
(check this in PDF content)
35
Majouga A., Sokolsky-Papkov M., Kuznetsov A., Lebedev D., Efremova M., Beloglazkina E., Rudakovskaya P.G., Veselov M., Zyk N., Golovin Y.I., Klyachko N.L., Kabanov A.V. Enzymefunctionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: Synthesis, purification and control of enzyme function by low-frequency magnetic field // Colloid Surface B. 2015. V. 125 P. 104–109.
(check this in PDF content)
36
Serantes D., Chantrell R., Gavilán H., Morales M.D.P., Chubykalo-Fesenko O., Baldomir D., Satoh A. Anisotropic magnetic nanoparticles for biomedicine: bridging frequency separated AC-field controlled domains of actuation // arXiv. 2017. P. 1704.06959.
(check this in PDF content)
37
Castillo M., Ebensperger R., Wirtz D., Walczak M., Hurtado D.E., Celedon A. Local mechanical response of cells to the controlled rotation of magnetic nanorods // J. Biomed. Mat. Res. B. 2014. V. 102. No 8. P. 1779–1785.
(check this in PDF content)
38
Martínez-Banderas A.I., Aires A., Teran F.J., Perez J.E., Cadenas J.F., Alsharif N., Ravasi T., Cortajarena A.L., Kosel J. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death // Sci. Rep. — UK. 2016. V. 6. P. 35786.
(check this in PDF content)
39
Hu S.H., Gao X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy // J. Am. Chem. Soc. 2010. V. 132. No 21. P. 7234–7237.
(check this in PDF content)
40
Yu H., Chen M., Rice P.M., Wang S.X., White R.L., Sun S. Dumbbell-like bifunctional Au−Fe3O4 nanoparticles // Nano Lett. 2005. V. 5. No 2. P. 379–382.
(check this in PDF content)
41
Mayzel M., Ahlner A., Lundström P., Orekhov V.Y. Measurement of protein backbone 13CO and 15N relaxation dispersion at high resolution // J. Biomol. NMR. 2017. V. 69. No 1. P. 1–12.
(check this in PDF content)
42
Hartmann A., Krainer G., Keller S., Schlierf M. Quantification of millisecond protein-folding dynamics in membranemimetic environments by single-molecule förster resonance energy transfer spectroscopy // Anal. Chem. 2015. V. 87. No 22. P. 11224–11232.
(check this in PDF content)
43
Salmon L., Bouvignies G., Markwick P., Blackledge M. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales // Biochemistry US. 2011. V. 50. No 14. P. 2735–2747.
(check this in PDF content)
44
Anandakrishnan R., Drozdetski A., Walker R.C., Onufriev A.V. Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations // Biophys. J. 2015. V. 108. No 5. P. 1153–1164.
(check this in PDF content)
45
Efremova M.V., Veselov M.M., Barulin A.V., Gribanovsky S.L., Le-Deygen, I.M., Uporov I.V., Kudryashova E.V., SokolskyPapkov M., Majouga A.G., Golovin Y.I., Kabanov A.V., Klyachko N.L. In situ observation of chymotrypsin catalytic activity change actuated by non-heating low-frequency magnetic field // ACS Nano. 2018. V. 12. No 4. P. 3190–3199.
(check this in PDF content)
46
Zhang E., Kircher M.F., Koch M., Eliasson L., Goldberg S.N., Renström E. Dynamic magnetic fields remote-control apoptosis via nanoparticle rotation // ACS Nano. 2014. V. 8. No 4. P. 3192–3201.
(check this in PDF content)
47
Zakharchenko A., Guz N., Laradji A.M., Katz E., Minko S. Magnetic field remotely controlled selective biocatalysis // Nat. Catal. 2018. V. 1. No 1. P. 73–81.
(check this in PDF content)
48
Lu Z., Prouty M.D., Guo Z., Golub V.O., Kumar C.S., Lvov Y.M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles // Langmuir. 2005. V. 21. No 5. P. 2042–2050.
(check this in PDF content)
49
Hughes S., McBain S., Dobson J., El Haj A.J. Selective activation of mechanosensitive ion channels using magnetic particles // J. R. Soc. Interface. 2008. V. 5. No 25. P. 855–864.
(check this in PDF content)
50
Hoffman B.D., Grashoff C., Schwartz M.A. Dynamic molecular processes mediate cellular mechanotransduction // Nature. 2011. V. 475. No 7356. P. 316–323.
(check this in PDF content)
51
Roca-Cusachs P., Conte V., Trepat X. Quantifying forces in cell biology // Nat. Cell Biol. 2017. V. 19. No 7. P. 742–751.
(check this in PDF content)
52
Roux K.J., Crisp M.L., Liu Q., Kim D., Kozlov S., Stewart C.L., Burke, B. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization // P. Natl. Acad. Sci. USA. 2009. V. 106. No 7. P. 2194–2199.
(check this in PDF content)
53
Ferrer J.M., Lee H., Chen J., Pelz B., Nakamura F., Kamm R.D., Lang M.J. Measuring molecular rupture forces between single actin filaments and actin-binding proteins // P. Natl Acad. Sci. USA. 2008. V. 105. No 27. P. 9221–9226.
(check this in PDF content)
54
The World of Nano-Biomechanics / Ed. Ikai A. Elsevier Science, 2007. 300 p.
(check this in PDF content)
55
Matthews B.D., Overby D.R., Mannix R., Ingber D.E. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels // J. Cell. Sci. 2006. V. 119. No 3. P. 508–518.
(check this in PDF content)
56
Golovin Y.I., Klyachko N.L., Golovin D.Y., Efremova M.V., Samodurov A.A., Sokolski-Papkov M., Kabanov A.V. A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field // Tech. Phys. Lett. 2013. V. 39. No 3. P. 240–243.
(check this in PDF content)
57
Golovin Y.I., Klyachko N.L., Sokolsky-Papkov M., Kabanov A.V. Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by lowfrequency magnetic fields // Bul. Rus. Acad. Sci. Phys. 2013. V. 77. No 11. P. 1350–1359.
(check this in PDF content)
58
Golovin Y.I., Gribanovskii S.L., Golovin D.Y., Klyachko N.L., Kabanov A.V. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules // Phys. Solid State. 2014. V. 56. No 7. P. 1342–1351.
(check this in PDF content)
59
Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Zhigachev A.O., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study // J. Nanopart. Res. 2017. V. 19. P. 59.
(check this in PDF content)
60
Sakellari D., Brintakis K., Kostopoulou A., Myrovali E., Simeonidis K., Lappas A., Angelakeris M. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators // Mater. Sci. Eng. C. Mater. Biol. Appl. 2016. V. 58. P. 187–193.
(check this in PDF content)
61
Makridis A., Tziomaki M., Topouridou K., Yavropoulou M.P., Yovos J.G., Kalogirou O., Samaras T., Angelakeris M.A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells // Int. J. Hyperther. 2016. V. 32. No 7. P. 778–785.
(check this in PDF content)
62
Bauer L.M., Situ S.F., Griswold M.A., Samia A.C.S. High-performance iron oxide nanoparticles for magnetic particle imaging–guided hyperthermia (hMPI) // Nanoscale. 2016. V. 8. No 24. P. 12162–12169.
(check this in PDF content)
63
Grüll H., Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound // J. Control. Release. 2012. V. 161. No 2. P. 317–327.
(check this in PDF content)
64
Ponce A.M., Vujaskovic Z., Yuan F., Needham D., Dewhirst M.W. Hyperthermia mediated liposomal drug delivery // Int. J. Hyperther. 2006. V. 22. No 3. P. 205–213.
(check this in PDF content)
65
Contreras M.F., Sougrat R., Zaher A., Ravasi T., Kosel J. Nonchemotoxic induction of cancer cell death using magnetic nanowires // Int. J. Nanomed. 2015. V. 10. P. 2141–2153.
(check this in PDF content)
66
Chowdhury F., Na S., Li D., Poh Y.C., Tanaka T.S., Wang F., Wang N. Cell material property dictates stress-induced spreading and differentiation in embryonic stem cells //Nat. Mater. 2010. V. 9. No 1. P. 82–88.
(check this in PDF content)
67
Tay A., Kunze A., Murray C., Di Carlo D. Induction of calcium influx in cortical neural networks by nanomagnetic forces // ACS Nano. 2016. V. 10. No 2. P. 2331–2341.
(check this in PDF content)
68
Lee J.H., Kim E.S., Cho M.H., Son M., Yeon S.I., Shin J.S., Cheon J. Artificial control of cell signaling and growth by magnetic nanoparticles // Angew. Chem. Int. Edit. 2010. V. 49. No 33. P. 5698–5702.
(check this in PDF content)
69
Cheng Y., Muroski M.E., Petit D.C., Mansell R., Vemulkar T., Morshed R.A., Han Y., Balyasnikova I.V., Horbinski C.M., Huang X., Zhang L., Cowburn R.P., Lesniak M.S. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma // J. Control. Release. 2016. V. 223. P. 75–84.
(check this in PDF content)
70
Shen Y., Wu C., Uyeda T.Q., Plaza G.R., Liu B., Han Y., Lesniak M.C., Cheng Y. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field // Theranostics. 2017. V. 7. No 6. P. 1735–1748.
(check this in PDF content)
71
Liu M., Pan L., Piao H., Sun H., Huang X., Peng C., Liu Y. Magnetically actuated wormlike nanomotors for controlled cargo release // ACS Appl. Mater. Inter. 2015. V. 7. No 47. P. 26017–26021.
(check this in PDF content)
72
Vegerhof A., Barnoy E.A., Motiei M., Malka D., Danan Y., Zalevsky Z., Popovtzer R. Targeted magnetic nanoparticles for mechanical lysis of tumor cells by low-amplitude alternating magnetic field // Materials. 2016. V. 9. No 11. P. 943.
(check this in PDF content)
73
Cheng D., Li X., Zhang G., Shi H. Morphological effect of oscillating magnetic nanoparticles in killing tumor cells // Nanoscale Res. Lett. 2014. V. 9. No 1. P. 195.
(check this in PDF content)
74
Mizuki T., Watanabe N., Nagaoka Y., Fukushima T., Morimoto H., Usami R., Maekawa T. Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field // Biochem. Bioph. Res. Co. 2010. V. 393. No 4. P. 779–782.
(check this in PDF content)
75
Guardia P., Corato R.D., Lartigue L., Wilhelm C., Espinosa A., Hernandez M.G., Gazeau F., Manna L., Pellegrino T. Water soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment // ACS Nano. 2012. V. 6. No 4. P. 3080–3091.
(check this in PDF content)
76
Basel M.T., Balivada S., Wang H., Shrestha T.B., Seo G.M., Pyle M., Abayaweera G., Dani R., Koper O.B., Tamura M., Chikan V., Bossmann, S.H., Troyer D.L. Cell-delivered magnetic NPs caused hyperthermia-mediated increased survival in a murine pancreatic cancer model // Int. J. Nanomed. 2012. V. 7. P. 297–306.
(check this in PDF content)
77
Balivada S., Rachakatla R.S., Wang H., Samarakoon T.N., Dani R.K., Pyle, M., Kroh F.O., Walker B., Leaym X., Koper O.B., Tamura M., Chikan V., Bossmann S.H., Troyer D.L. A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study // BMC Cancer. 2010. V. 10. P. 119.
(check this in PDF content)
78
Ito A., Tanaka K., Honda H., Abe S. Yamaguchi H., Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles // J. Biosci. Bioeng. 2003. V. 96. No 4. P. 364–369.
(check this in PDF content)