The 142 references in paper Ю. Головин И., Н. Клячко Л., А. Мажуга Г., С. Грибановский Л., Д. Головин Ю., А. Жигачев О., А. Шуклинов В., М. Ефремова В., М. Веселов М., К. Власова Ю., А. Усвалиев Д., И. Ле-Дейген М., А. Кабанов В. (2018) “НОВЫЕ ПОДХОДЫ К НАНОТЕРАНОСТИКЕ: ПОЛИФУНКЦИОНАЛЬНЫЕ МАГНИТНЫЕ НАНОЧАСТИЦЫ, АКТИВИРУЕМЫЕ НЕГРЕЮЩИМ НИЗКОЧАСТОТНЫМ МАГНИТНЫМ ПОЛЕМ, УПРАВЛЯЮТ БИОХИМИЧЕСКОЙ СИСТЕМОЙ С МОЛЕКУЛЯРНОЙ ЛОКАЛЬНОСТЬЮ И СЕЛЕКТИВНОСТЬЮ” / spz:neicon:nanorf:y:2018:i:6:p:3-25

1
Kunjachan S., Ehling J., Storm G., Kiessling F., Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects // Chem. Rev. 2015. V. 115. No 19. P. 10907–10937.
(check this in PDF content)
2
Lim E.-K., Kim T., Paik S., Haam S., Huh Y.-M., Lee K. Nanomaterials for theranostics: recent advances and future challenges // Chem. Rev. 2015. V. 115. No 1. P. 327–394.
(check this in PDF content)
3
Muthu M.S., Leong D.T., Mei L., Feng S.-S., Muthu M.S., Leong D.T., Mei L., Feng S-S. Nanotheranostics — Application and further development of nanomedicine strategies for advanced theranostics // Theranostics. 2014. V. 4. No 6. P. 660–677.
(check this in PDF content)
4
Ryu J.H., Lee S., Son S., Kim S.H., Leary J.F., Kwon K.C.I.C. Theranostic nanoparticles for future personalized medicine // J. Controlled Release. 2014. V. 190. P. 477–484.
(check this in PDF content)
5
Kim T.H., Lee S., Chen X. Nanotheranostics for personalized medicine // Expert Rev. Mol. Diagn. 2013. V. 13. No 3. P. 257–269.
(check this in PDF content)
6
Chen X., Gambhir S.S, Cheon J. (Eds). Theranostic nanomedicine (Topical collection of papers) // Acc. Chem. Res. 2011. V. 44. P. 841–1134.
(check this in PDF content)
7
Kazakov S. Liposome-nanogel structures for future pharmaceutical applications: an updated review // Curr. Pharmaceutical Des. 2016. V. 22. P. 1391–1413.
(check this in PDF content)
8
Mccarthy J.R. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease // Adv. Drug Deliv. Rev. 2011. V. 62. No 11. P. 1023–1030.
(check this in PDF content)
9
Wang L., Chuang M.C., Ho J.A. Nanotheranostics — a review of recent publications // Int. J. Nanomedicine. 2012. V. 7. P. 4679–4695.
(check this in PDF content)
10
Vinhas R., Cordeiro M., Carlos F.F., Mendo S., Fernandes A.R., Figueiredo S., Baptista P.V. Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Review // Nanobiosensors Dis. Diagn. 2015. V. 4. P. 11–23.
(check this in PDF content)
11
Kelkar S.S., Reineke T.M. Theranostics: combining imaging and therapy // Bioconjugate Chem. 2011. V. 22. P. 1879–1903.
(check this in PDF content)
12
Baetke S.C., Lammers T., Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer // British J. Radiology. 2015. V. 88 (1054). P. 20150207 (24 рp.).
(check this in PDF content)
13
Zapotoczny S., Szczubiałka K., Nowakowska M. Nanoparticles in endothelial theranostics // Pharmacological Reps. 2015. V. 67. No 4. P. 751–755.
(check this in PDF content)
14
Min Y., Caster J.M., Eblan M.J., Wang A.Z. Clinical translation of nanomedicine // Chem. Rev. 2015. V. 115. No 19. P. 11147–11190.
(check this in PDF content)
15
Funkhouser J. Reinventing pharma: theranostic revolution // Curr. Drug Discovery. 2002. V. 2. P. 17–19.
(check this in PDF content)
16
Warner S. Diagnostics + therapy = theranostics // Scientist. 2004. V. 18. No 16. P. 38–39.
(check this in PDF content)
17
СанПиН 2.2.4.3359–16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах». Постановление Главного государственного санитарного врача РФ от 21.06.2016 No 81.
(check this in PDF content)
18
Extremely low frequency fields. Environmental Health Criteria 238. World Health Organization. 2007. 543 p.
(check this in PDF content)
19
Human exposure to radiofrequency electromagnetic fields; Reassessment of exposure to radiofrequency electromagnetic fields limits and policies; Final Rule and Proposed Rule. 47 CFR Parts 1, 2, and 95 [ET Docket No. 03–137; FCC 13–39]. Federal Communications Commission. USA. Federal Register. Rules and Regulations. 2013. V. 78. No 107. P. 33634–33652.
(check this in PDF content)
20
Environmental and workplace health. Limits of human exposure to radiofrequency electromagnetic energy in the frequency range from 3 kHz to 300 GHz. Consumer and clinical radiation protection bureau environmental and radiation health sciences directorate healthy environments and consumer safety branch health Canada. Safety Code 6. 2015. 17 p.
(check this in PDF content)
21
ICNIRP Guidelines. Guidelines for limiting exposure to timevarying electric, magnetic, and electromagnetic fields. (Up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Physics. 1998. V. 74. No 4. P. 494–522.
(check this in PDF content)
22
Guidelines for limiting exposure to time-varying electrical and magnetic fields (1 Hz — 100 kHz) // Health Phys. 2010. V. 99. No 6. P. 818–836.
(check this in PDF content)
23
Brezovich I.A. Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods. In: biological, physical and clinical aspects of hyperthermia (Eds B. R. Paliwal, F. W. Hetzel, and M. W. Dewhirst) // Med. Phys. Monogr. 1988. V. 16. P. 82–111.
(check this in PDF content)
24
Chang L., Liu X.L., Fan D.D., Miao Y.Q., Zhang H., Ma H.P., Liu Q.Y., Ma P., Xue W.M., Luo Y.E., Fan H.M. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles // Int. J. Nanomedicine. 2016. V. 11. P. 1175–1185.
(check this in PDF content)
25
Obaidat M., Issa B., Haik Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia // Nanomaterials. 2015. V. 5. P. 63–89.
(check this in PDF content)
26
Dutz S., Hergt R. Magnetic particle hyperthermia — a promising tumour therapy? // Nanotechnol. 2014. V. 25. P. 452001– 452029.
(check this in PDF content)
27
Hergt R., Dutz S. Magnetic particle hyperthermia — biophysical limitations of a visionary tumour therapy // J. Magnetism Magn. Mater. 2007. V. 311. P. 187–192.
(check this in PDF content)
28
Hergt R., Dutz S., Muller R., Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy // J. Phys.: Condens. Matter. 2006. V. 18. P. S2919–S2934.
(check this in PDF content)
29
Laurent S., Dutz S., Häfeli U.O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles // Adv. Coll. Interface Sci. 2011. V. 166. P. 8–23.
(check this in PDF content)
30
Salunkhe A.B., Khot V.M., Pawar S.H. Magnetic hyperthermia with magnetic nanoparticles: a status review // Curr. Topics Medicinal Chem. 2014. V. 14. No 6. P. 572–594.
(check this in PDF content)
31
Ling-Yun Z., Jia-Yi L., Wei-Wei O., Dan-Ye L., Li L., Li-Ya L., Jin-Tian T. Magnetic-mediated hyperthermia for cancer treatment: Research progress and clinical trials // Chin. Phys. B. 2013. V. 22. No 10. P. 108104-1–108104-14.
(check this in PDF content)
32
Kobayashi H., Ueda K., Tomitaka A., Yamada T., Takemura Y. Self-heating property of magnetite nanoparticles dispersed in solution // IEEE Transactions on Magnetics. 2011. V. 47. No 10. P. 4151–4154.
(check this in PDF content)
33
Jourdan A., Wust P., Fähling H., John W., Hinz A., Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia // Int. J. Hyperthermia. 2009. V. 25. No 7. P. 499–511.
(check this in PDF content)
34
Andrä W., d’Ambly C.G., Hergt R., Hilger I., Kaiser W.A. Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia J. Magnetism Magn. Mater. 1999. V. 194. No 1–3. P. 197–203.
(check this in PDF content)
35
Rabin Y. Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? // Int. J. Hyperthermia. 2002. V. 18. No 3. P. 194–202.
(check this in PDF content)
36
Keblinski P., Cahill D.G., Bodapati A., Sullivan C.R., Taton T.A. Limits of localized heating by electromagnetically excited nanoparticles // J. Appl. Phys. 2006. V. 100. P. 054305.
(check this in PDF content)
37
Gupta A., Kane R.S., Borca-Tasciuc D.-A. Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles // J. Appl. Phys. 2010. V. 108. P. 064901(1)–064901(7).
(check this in PDF content)
38
Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Klyachko N.L., Majouga A.G., Master А.M., Sokolsky M., Kabanov A.V. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields // J. Control. Release. 2015. V. 219. P. 43–60.
(check this in PDF content)
39
Golovin Y.I., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new generation nanomedicine // J. Nanopart. Res. 2017. V. 19. P. 63 (48 рр.).
(check this in PDF content)
40
Estelrich J., Sánchez-Martín M.J., Busquets M.A. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents // Int. J. Nanomedicine. 2015. V. 10. P. 1727–1741.
(check this in PDF content)
41
Cai Y., Cao C., He X., Yang C., Tian L., Zhu R., Pan Y. Enhanced magnetic resonance imaging and staining of cancer cells using ferrimagnetic H-ferritin nanoparticles with increasing core size // Int. J. Nanomedicine. 2015. V. 10. P. 2619–2634.
(check this in PDF content)
42
Zhou S.-F. Functional magnetic resonance imaging is a powerful approach to probing the mechanism of action of therapeutic drugs that act on the central nervous system // Drug Design, Development Therapy. 2015. V. 9. P. 3863–3865.
(check this in PDF content)
43
Hou L., Zhang H., Wang Y., Wang L., Yang X., Zhang Z. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent // Int. J. Nanomedicine. 2015. V. 10. P. 4507–4520.
(check this in PDF content)
44
Cowger T.A., Tang W., Zhen Z., Hu K., Rink D.E., Todd T.J., Wang G.D., Zhang W., Chen H., Xie J. Casein-coated Fe5C2 nanoparticles with superior r2 relaxivity for liver-specific magnetic resonance imaging // Theranostics. 2015. V. 5. No 11. P. 1225–1232.
(check this in PDF content)
45
Gu M.-J., Li K.-F., Zhang L.-X., Wang H., Liu L.-S., Zheng Z.-Z., Han N.-Y., Yang Z.-J., Fan T.-Y. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging // Int. J. Nanomedicine. 2015. V. 10. P. 5187–5204.
(check this in PDF content)
46
Fattahi H., Laurent S., Liu F., Arsalani N., Elst L.V., Muller R.N. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics // Nanomedicine. 2011. V. 6. No 3. P. 529–544.
(check this in PDF content)
47
Al-Ahmady Z.S., Chaloin O., Kostarelos K. Monoclonal antibody-targeted, temperature-sensitive liposomes: In vivo tumor chemotherapeutics in combination with mild hyperthermia // J. Control. Release. 2014. V. 196. P. 332–343.
(check this in PDF content)
48
Hervault A., Thanh N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer // Nanoscale. 2014. V. 6. P. 11553–11573.
(check this in PDF content)
49
Hayashi K., Nakamura M., Miki H., Ozaki S., Abe M., Matsumoto T., Sakamoto W., Yogo T., Ishimura K. Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release // Theranostics. 2014. V. 4. No 8. P. 834–843.
(check this in PDF content)
50
Pankhurst Q.A., Thanh N.T.K., Jones K., Dobson J. Progress in applications of magnetic nanoparticles in biomedicine // J. Phys. D: Appl. Phys. 2009. V. 42. P. 224001.
(check this in PDF content)
51
Torres-Lugo L., Rinaldi C. Thermal potentiation of chemotherapy by magnetic nanoparticles // Nanomedicine. 2013. V. 8. No 10. P. 1689–1707.
(check this in PDF content)
52
Theґvenot J., Oliveira H., Sandre O., Lecommandoux S. Magnetic responsive polymer composite materials // Chem. Soc. Rev. 2013. V. 42. P. 7099–7116.
(check this in PDF content)
53
Yin P.T., Shah B.P., Lee K.-B. Combined magnetic nanoparticlebased microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells // Small. 2014. V. 10. No 20. P. 4106–4112.
(check this in PDF content)
54
Qu Y., Li J., Ren J., Leng J., Linc C., Shi D. Enhanced synergism of thermo-chemotherapy by combining highly efficient magnetic hyperthermia with magnetothermally-facilitated drug release // Nanoscale. 2014. V. 6. P. 12408–12413.
(check this in PDF content)
55
Maier-Hauff K., Ulrich F., Nestler D., Niehoff H., Wust P., Thiesen B., Orawa H., Budach V., Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme // J. Neurooncol. 2011. V. 103. P. 317–324.
(check this in PDF content)
56
Lee N., Yoo D., Ling D., Cho M.H., Hyeon T., Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy // Chem. Rev. 2015. V. 115. No 19. P. 10637–10689.
(check this in PDF content)
57
Cai X., Yang F., Gu N. Applications of magnetic microbubbles for theranostics // Theranostics. 2012. V. 2. No 1. P. 103–112.
(check this in PDF content)
58
Urries I., Muñoz C., Gomez L., Marquina C., Sebastian V., Arruebo M., Santamaria J. Magneto-plasmonic nanoparticles as theranostic platforms for magnetic resonance imaging, drug delivery and NIR hyperthermia applications // Nanoscale. 2012. V. 6. No 15. P. 9230–9240.
(check this in PDF content)
59
Yoo D., Lee J.-H., Shin T.-H., Cheon J. Theranostic magnetic nanoparticles // Accounts Chem. Res. 2011. V. 44. No 10. P. 863–874.
(check this in PDF content)
60
He H., David A., Chertok B., Cole A., Lee K., Zhang J., Wang J., Huang Y., Yang V.C. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system // Pharm. Res. 2013. V. 30. No 10. P. 2445–2458.
(check this in PDF content)
61
Kamalapuram S.K., Kanwar R.K., Roy K., Chaudhary R., Sehgal R., Kanwar J.R. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers // Int. J. Nanomedicine. 2016. V. 11. P. 1349–1366.
(check this in PDF content)
62
Buchachenko A.L. Magneto-biology and medicine. New York: Nova Science Publishers. 2015. 236 p.
(check this in PDF content)
63
Бинги В.Н. Принципы электромагнитной биофизики. М.: Физматлит, 2011. 592 с.
(check this in PDF content)
64
Бинги В.Н., Савин А.В. Физические проблемы действия слабых магнитных полей на биологические системы // Успехи физических наук. 2003. Т. 173. С. 265–300.
(check this in PDF content)
65
Гросберг А.Ю. Несколько замечаний, навеянных обзором В.Н. Бинги и Ф.В. Савина // Успехи физических наук. 2003. Т. 173. С. 1145–1148.
(check this in PDF content)
66
Park R.L. Voodoo science: the road from foolishness to fraud. Oxford: Oxford University Press. 2001. 240 p.
(check this in PDF content)
67
Noy A. Handbook of molecular force spectroscopy. New York: Springer. 2008. 300 p.
(check this in PDF content)
68
Yanagida T., Ishii Y. Single molecule dynamics in life science. Weinheim: Wiley-VCH. 2009. 346 p.
(check this in PDF content)
69
Oberhauser A.F. Single-molecule studies of proteins. New York: Springer. 2013. 274 p.
(check this in PDF content)
70
Magnetism in medicine: A handbook, second edition (Eds. W. Andra and H. Nowak). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 2007. 630 p.
(check this in PDF content)
71
Steiner U., Ulrich N. Magnetic field effects on chemical kinetics // Chem. Rev. 1989. V. 89. P. 51–147.
(check this in PDF content)
72
Funk R.H.W., Monsees T., Özkucur N. Electromagnetic effects — from cell biology to medicine // Prog. Histochem. Cytochem. 2009. V. 43. No 4. P. 177–264.
(check this in PDF content)
73
Buchachenko A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? // Bioelectromagnetics. 2016. V. 37. P. 1–13.
(check this in PDF content)
74
Бучаченко А.Л. Магнитно-зависимые молекулярные и химические процессы в биохимии, генетике и медицине // Успехи химии. 2014. Т. 83. No 1. С. 1–12.
(check this in PDF content)
75
Dynamic spin chemistry: magnetic controls and spin dynamics of chemical reactions (Eds. Nagakura S., Hayashi H., Azumi T.). N.-Y.: Wiley. 1998. 297 p.
(check this in PDF content)
76
Brocklehurst B. Magnetic fields and radical reactions: Recent developments and their role in nature // Chem. Soc. Rev. 2002. V. 31. No 5. P. 301–311.
(check this in PDF content)
77
Головин Ю.И. Магнитопластичность твердых тел (обзор) // Физика твердого тела. 2004. Т. 46. No 5. С. 769–803.
(check this in PDF content)
78
Головин Ю.И., Моргунов Р.Б. Новый тип магнитопластических эффектов в линейных аморфных полимерах // Физика твердого тела. 2001. Т. 43. No 5. С. 827–832.
(check this in PDF content)
79
Alshits V.I., Darinskaya E.V., Koldaeva M.V., Petrzhik E.A. Magnetoplastic effect in nonmagnetic crystals. In: Dislocations in Solids. Amsterdam: Elsevier. 2008. V. 14. P. 333–437.
(check this in PDF content)
80
Hore P.J. Are biochemical reactions affected by weak magnetic fields? // Proc. Nat. Acad. Sci. 2012. V. 109. P. 1357–1358.
(check this in PDF content)
81
Krishnan K.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy // IEEE Trans Magn. 2010. V. 46. P. 2523–2558.
(check this in PDF content)
82
Magnetic nanoparticles. From fabrication to clinical application (Ed. Thanh N.T.K.). Boca Raton: CRC Press. 2012. 584 p.
(check this in PDF content)
83
Magnetic Nanomaterials (Ed. Kumar C.S.S.). Wiley VCH. 2009. 648 p.
(check this in PDF content)
84
Magnetic Nanoparticles (Ed. S.P. Gubin). Wiley-VCH. 2009. 466 p.
(check this in PDF content)
85
Banobre-Lopez M., Pineiro Y., Lopez-Quintela M.A., Rivas J. Magnetic nanoparticles for biomedical applications. In Handbook of nanomaterials properties (Eds. B. Bhushan et al.). 2014. Berlin-Heidelberg: Springer-Verlag. P. 457–493.
(check this in PDF content)
86
Reddy L., Areas J.L., Nicolas J., Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications // Chem. Rev. 2012. V.112. P. 5818–5878.
(check this in PDF content)
87
Wu W., Wu Z., Yu T., Jiang C., Kim W.-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications // Sci. Technol. Adv. Mater. 2015. V. 16. P. 023501 (43 pp.).
(check this in PDF content)
88
Majouga A., Sokolsky-Papkov M., Kuznetsov A., Lebedev D., Efremova M., Beloglazkina E., Rudakovskaya P., Veselov M., Zyka N., Golovin Y., Klyachko N., Kabanov A. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: Synthesis, purification and control of enzyme function by low-frequency magnetic field // Coll. Surf. B: Biointerfaces. 2015. V. 125. P. 104–109.
(check this in PDF content)
89
Schleich N., Danhier F., Préat V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation // J. Controlled Release. 2014. V. 198. P. 35–54.
(check this in PDF content)
90
Hauser A.K., Wydra R.J., Stocke N.A., Anderson K.W., Hilt J.Z. Magnetic nanoparticles and nanocomposites for remote controlled therapies // J. Control. Release. 2015. V. 219. P. 76–94.
(check this in PDF content)
91
Liao S.-H., Liu C.-H., Bastakoti B.P., Suzuki N., Chang Y., Yamauchi Y., Lin F.-H., Wu K.C.-W. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia // Int. J. Nanomedicine. 2015. V. 10. P. 3315–3328.
(check this in PDF content)
92
Schleich N., Po C., Jacobs D., Ucakar B., Gallez B., Danhier F., Préat V. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy // J. ontrolled Release. 2014. V. 194. P. 82–91.
(check this in PDF content)
93
Oh Y., Moorthy M. S., Manivasagan P., Bharathiraja S., Oh J. Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles // Biochimie. 2017. V. 133. P. 7–19.
(check this in PDF content)
94
Chiolerio A., Chiodoni A., Allia P., Martino P. Magnetite and other Fe-oxide nanoparticles. In: Handbook of nanomaterials properties (Eds. B. Bhushan et al.). Berlin-Heidelberg: Springer-Verlag. P. 2014. P. 213–246.
(check this in PDF content)
95
Reimhult E., Amstad E. Stabilization and characterization of iron oxide superparamagnetic core-shell nanoparticles for biomedical applications. In Handbook of Nanomaterials Properties (Eds. B. Bhushan et al.). Berlin-Heidelberg: Springer-Verlag. 2014. P. 355–387.
(check this in PDF content)
96
Landers J., Salamon S., Remmer H., Ludwig F., Wende H. Simultaneous study of Brownian and Néel relaxation phenomena in ferrofluids by mössbauer spectroscopy // Nano Lett. 2016. V. 16. No 2. P. 1150–1155.
(check this in PDF content)
97
Bustamante C., Chemla Y.R., Forde N.R., Izhaky D. Mechanical processes in biochemistry // Annu. Rev. Biochem. 2004. V. 73. P. 705–748.
(check this in PDF content)
98
Single molecule dynamics in life science (Eds. Yanagida T., Ishii Y.). Weinheim: Wiley-VCH. 2009. 328 p.
(check this in PDF content)
99
Hu B., Dobson J., El Haj A.J. Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation // Nanomedicine: Nanotechnol. Biol. Medicine. 2014. V. 10. No 1. P. 45–55.
(check this in PDF content)
100
Lee C.K., Wang Y.M., Huang L.S., Lin S. Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein–ligand interaction // Micron. 2007. V. 38. P. 446–461.
(check this in PDF content)
101
Suresh S. Biomechanics and biophysics of cancer cells // Acta Biomater. 2007. V. 3. P. 413–438.
(check this in PDF content)
102
Mannix R.J., Kumar S., Cassiola F., Montoya-Zavala M., Feinstein E., Prentiss M., Ingber D.E. Nanomagnetic actuation of receptor-mediated signal transduction // Nat. Nanotechnol. 2008. V. 3. P. 36–40.
(check this in PDF content)
103
Ikai A. The world of nano-biomechanics. Mechanical imaging and measurement by atomic force microscopy. Amsterdam: Elsevier, 2008. 300 p.
(check this in PDF content)
104
Головин Ю.И., Клячко Н.Л., Головин Д.Ю., Ефремова М.В., Самодуров А.А., Сокольски-Папков M., Кабанов А.В. Новый подход к управлению биохимическими реакциями в магнитной наносуспензии с помощью низкочастотного магнитного поля // Письма в ЖТФ. 2013. T. 39. No 5. С. 24–32.
(check this in PDF content)
105
Головин Ю.И., Клячко Н.Л., Сокольски-Папков М., Кабанов А.В. Однодоменные магнитные наночастицы как генераторы силы для наномеханического управления биохимическими реакциями низкочастотным магнитным полем // Известия РАН. Серия физическая. 2013. Т. 77. No 11. C. 1621–1630.
(check this in PDF content)
106
Головин Ю.И., Грибановский С.Л., Клячко Н.Л., Кабанов А.В. Наномеханическое управление активностью ферментов, иммобилизованных на однодоменных магнитных наночастицах // Журн. технической физики. 2014. Т. 84. No 6. С. 147–150.
(check this in PDF content)
107
Головин Ю.И., Грибановский С.Л., Головин Д.Ю., Клячко Н.Л., Кабанов А.В. Однодоменные магнитные наночастицы в переменном магнитном поле как медиаторы локальной деформации окружающих макромолекул // Физика твердого тела. 2014. Т. 56. No 7. С. 1292–1300.
(check this in PDF content)
108
Головин Ю.И., Клячко Н.Л, Грибановский С.Л., Головин Д.Ю., Мажуга А.Г. Магнитомеханическое управление высвобождением лекарств из функционализованных магнитных наночастиц // Письма в ЖТФ. 2015. Т. 41. No 14. С. 22–26.
(check this in PDF content)
109
Golovin Y.I., Gribanovsky S.L., Golovin D.Y., Zhigachev A.O., Klyachko N.L., Majouga A.G., Sokolsky M., Kabanov A.V. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study // J. Nanopart. Res. 2017. V. 19. P. 59 (14 p.).
(check this in PDF content)
110
Головин Ю.И., Клячко Н.Л., Грибановский С.Л., Головин Д.Ю., Мажуга А.Г. Модель контролируемого высвобождения лекарств из функционализованных магнитных наночастиц негреющим переменным магнитным полем // Письма в ЖТФ. 2016. Т. 42. No 5. С. 89–95.
(check this in PDF content)
111
Golovin Y., Golovin D., Klyachko N., Majouga A., Kabanov A. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field // J. Nanopart. Res. 2017. V. 19. P. 64 (10 p.).
(check this in PDF content)
112
Santos L.J., Reis R.L., Gomes M.E. Harnessing magnetic mechano-actuation in regenerative medicine and tissue engineering // Review Trends in Biotechnology. 2015. V. 33. No 8. P. 471–479.
(check this in PDF content)
113
Banchelli M., Nappini S., Montis C., Bonini M., Canton P., Bertia D., Baglioni P. Magnetic nanoparticle clusters as actuators of ssDNA release // Phys. Chem. Chem. Phys. 2014. V. 16. P. 10023–10031.
(check this in PDF content)
114
Nappini S., Bombelli F.B., Bonini M., Norden B., Baglioni P. Magnetoliposomes for controlled drug release in the presence of low-frequency magnetic field // Soft Matter. 2010. V. 6. P. 154–162.
(check this in PDF content)
115
Klyachko N.L, Sokolsky‐Papkov M., Pothayee N., Efremova M.V., Gulin D.A., Pothayee N., Kuznetsov A.A., Majouga A.G., Riffle J.S., Golovin Y.I., Kabanov A.V. Changing the enzyme reaction rate in magnetic nanosuspensions by a non‐ heating magnetic field // Angewandte Chemie. Int. Edition. 2012. V. 51. P. 12016–12019.
(check this in PDF content)
116
Leulmi S., Chauchet X., Morcrette M., Ortiz G., Joisten H., Sabon P., Livache T., Hou Y., Carrière M., Lequiena S., Dieny B. Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane // Nanoscale. 2015. V. 7. P. 15904–15914.
(check this in PDF content)
117
Wang B., Bienvenu C., Mendez-Garza J., Madeira P.A., Vierling P., Di Giorgio C. Necrosis of HepG2 cancer cells induced by the vibration of magnetic particles // J. Magnetism and Magnetic Mater. 2013. V. 344. P. 193–201.
(check this in PDF content)
118
Kim D.H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction // Nat. Mater. 2010. V. 9. P. 165–171.
(check this in PDF content)
119
Master A.M., Williams P.M., Pothayee Nik., Pothayee Nip., Zhang R., Vishwasrao H.M., Golovin Y.I., Riffle J.S., Sokolsky M., Kabanov A.V. Remote actuation of magnetic nanoparticles for cancer cell selective treatment through cytoskeletal disruption // Scientific Rep. 2016. V. 6. P. 33560.
(check this in PDF content)
120
Vlasova K.Y., Abakumov M.A., Deygen I.M., Golovin Y.I., Majouga A.G., Kabanov A.V., Klyachko N.L. New approach in remote control of drug release from container by means of magnetic nanoparticles and low frequency magnetic field // Proc. of 7th Baikal International Conference “Magnetic materials. New technologies” (BICMM-2016). Listvyanka village. Irkutsk region. RF. 22–26 August. 2016. P. 110–111.
(check this in PDF content)
121
Kutsenok E.D., Deygen I.M., Rudakovskaya P.G., Majouga A.G., Golovin Y.I., Kudryashova E.V., Kabanov A.V., Klyachko N.L. The study of the influence of low-frequency alternative magnetic field on the complexes of liposomes with magnetic nanoparticles by fluorescent methods // Proc. 7th International Conference “Biomaterials and Nanobiomaterials: Recent Advances Safety-Toxicology and Ecology Issues” (Bionanotox 2016). Heraklion. Crete. Greece. May 8–13. 2016. P. 31.
(check this in PDF content)
122
Le-Deygen I.M., Kutsenok E.O., Efremova M.V., Rudakovskaya P.G., Majouga A.G., Golovin Yu I., Gribanovsky S.L., Ghigachev A.O., Boldyrev I.A., Vodovozova E.L., Kudryashova E.V., Kabanov A.V., Klyachko N.L. Extremely low magnetic field as a perspective alternative for membrane microviscosity regulation // Proc. 8th International conference “Biomaterials and nanobiomaterials: Recent Advances Safety-Toxicology and Ecology Issues”. Heraklion. Crete. Greece. May 7–14. 2017. P. 11–11.
(check this in PDF content)
123
Efremova M.V., Veselov M.M., Barulin A.V., Gribanovsky S.L., Le-Deygen I.M., Uporov I.V., Kudryashova E.V., SokolskyPapkov M., Majouga A.G., Golovin Y.I., Kabanov A.V., Klyachko N.L. In Situ observation of chymotrypsin catalytic activity change actuated by nonheating low-frequency magnetic field // ACS Nano. 2018. V. 12. P. 3190–3199.
(check this in PDF content)
124
Головин Ю.И., Клячко Н.Л., Сокольски М., Кабанов А.В. Способ управления биохимическими реакциями // Патент РФ 2525439. Заявка: 2012155425/15 от 20.12.2012. Опубликовано 10.08.2014. Бюл. 22.
(check this in PDF content)
125
Головин Ю.И., Самодуров А.А., Грибановский С.Л., Шуклинов А.В., Клячко Н.Л., Мажуга А.Г., Кабанов А.В. Устройство для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы // Патент 2593238 РФ. Заявка 2014153860 от 30.12.2014. Опубликовано 10.08.2016. Бюл. 22.
(check this in PDF content)
126
Головин Ю.И., Шуклинов А.В., Грибановский С.Л., Жигачев А.О., Клячко Н.Л., Мажуга А.Г., Кабанов А.В. Устройство для исследования воздействия комбинированного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы // Патент РФ 2593238. Заявка 2016137843 от 22.09.2016. Опубликовано 23.03.2018. Бюл. 9.
(check this in PDF content)
127
Gleich B., Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles // Nature. 2005. V. 435. No 30. P. 1114–1217.
(check this in PDF content)
128
Gleich B. Principles and applications of magnetic particle imaging. Springer Vieweg. 2014. 118 p.
(check this in PDF content)
129
Knopp T., Buzug T.M. Magnetic particle imaging. An introduction to imaging principles and scanner instrumentation. Springer—Verlag. 2012. 204 p.
(check this in PDF content)
130
Magnetic particle imaging. A novel SPIO nanoparticle imaging technique (Eds. Buzug T.M., Borgert J.) Springer-Verlag. 2012. 383 p.
(check this in PDF content)
131
Panagiotopoulos N., Duschka R.L., Ahlborg M., Bringout G., Debbeler C., Graeser M., Kaethner C., Lüdtke-Buzug K., Medimagh H., Stelzner J., Buzug T.M., Barkhausen J., Vogt F.M., Haegele J. Magnetic particle imaging: current developments and future directions // Int. J. Nanomedicine. 2015. No 10. P. 3097–3114.
(check this in PDF content)
132
Saritas E.U., Goodwill P.W., Croft L.R., Konkle J.J., Lu K., Zheng B., Conolly S.M. Magnetic particle imaging (MPI) for NMR and MRI researchers // J. Magnetic Resonance. 2013. V. 229. P. 116–126.
(check this in PDF content)
133
Goodwill P.W., Saritas E.U., Croft L.R., Kim T.N., Krishnan K.M., Schaffer D.V., Conolly S.M. X-Space MPI: Magnetic nanoparticles for safe medical imaging // Adv. Mater. 2012. V. 24. P. 3870–3877.
(check this in PDF content)
134
Vogel P., Rückert M.A., Klauer P., Kullmann W.H., Jakob P.M., Behr V.C. Traveling wave magnetic particle imaging // IEEE Transaction on medical imaging. 2014. V. 33. No 2. P. 400–407.
(check this in PDF content)
135
Knopp T., Sattel T.F., Buzug T.M. Efficient magnetic gradient field generation with arbitrary axial displacement for magnetic particle imaging // IEEE Magn. Lett. 2012. V. 3. P. 6500104.
(check this in PDF content)
136
Sattel T.F., Knopp T., Biederer S., Gleich B., Weizenecker J., Borgert J., Buzug T.M. Single-sided device for magnetic particle imaging // J. Phys. D: Appl. Phys. 2009. V. 42. P. 022001.
(check this in PDF content)
137
Nair M., Guduru R., Liang P., Hong J., Sagar V., Khizroev S. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers // Nature Commun. 2013. V. 4. Article number: 1707.
(check this in PDF content)
138
Kaushik A., Jayant R.D., Nikkhah-Moshaie R., Bhardwaj V., Roy U., Huang Z., Ruiz A., Yndart A., Atluri V., El-Hage N., Khalili K., Nair M. Magnetically guided central nervous system delivery and toxicity evaluation of magnetoelectric nanocarriers // Scientific Rep. 2016. V. 6. Article number: 25309.
(check this in PDF content)
139
Guduru R., Liang P., Runowicz C., Nair M., Atluri V., Khizroev S. Magneto-electric nanoparticles to enable field-controlled highspecificity drug delivery to eradicate ovarian cancer cells // Scientific Rep. 2013. V. 3. Article number: 2953.
(check this in PDF content)
140
Yarmush M.L., Golberg A., Sersa G., Kotnik T., Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges // Annu. Rev. Biomed. Eng. 2014. V. 16. P. 295–320.
(check this in PDF content)
141
Jiang C., Davalos R.V., Bischof J.C. A review of basic to clinical studies of irreversible electroporation therapy // IEEE Trans. Biomedical Engineering. 2015. V. 62. No 1. P. 4–12.
(check this in PDF content)
142
Yue K., Guduru R., Hong J., Liang P., Nair M., Khizroev S. Magneto-electric nano-particles for non-invasive brain stimulation // PLOS One. 2012. V. 7. No 9. P. e44040.
(check this in PDF content)