The 23 references in paper А. Кучерова Е., И. Шубин Н., Т. Пасько В. (2018) “ПЕРСПЕКТИВНЫЕ СОРБЕНТЫ НА ОСНОВЕ МОДИФИЦИРОВАННОГО НАНОСТРУКТУРАМИ ЦЕОЛИТА ДЛЯ ОЧИСТКИ ВОДНЫХ СРЕД ОТ ОРГАНИЧЕСКИХ ПРИМЕСЕЙ” / spz:neicon:nanorf:y:2018:i:6:p:113-117

1
M’etivier-Pignon H., Faur-Brasquet C., Cloirec P.L. Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC with ultra-filtration to treat colored wastewaters // Sep. Purif. Technol. 2003. V. 31. P. 3–11.
(check this in PDF content)
2
Ravikumar K., Deebika B., Balu K. Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis // J. Hazard. Mater. 2005. V. 112. P. 75–83.
(check this in PDF content)
3
Rai H.S., Bhattacharyya M.S., Singh J., Bansal T.K., Vats P., Banerjee U.C. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment // Crit. Rev. Environ. Sci. Technol. 2005. V. 35. P. 219–238.
(check this in PDF content)
4
Wang S.B., Zhu Z.H. Characterization and environmental application an Australian natural zeolite for basic dye removal from aqueous solution // J. Hazard. Mater. 2006. V. 136. P. 946–952.
(check this in PDF content)
5
Suteu D., Biliuta G., Rusu L., Coseri S., Nacu G. Cellulose cellets as new type of adsorbent for the removal of dyes from aqueous media. Environ // Eng. Manag. J. 2015. V. 14. P. 525–532.
(check this in PDF content)
6
Kadirvelu K., Palanival M., Kalpana R., Rajeswari S. Activated carbon from an agricultural byproduct for the treatment of dyeing industry wastewater // Bioresour. Technol. 2000. V. 74. P. 263–265.
(check this in PDF content)
7
Huang J.H., Huang K.L., Liu S.Q., Wang A.T., Yan C. Adsorption of rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution // Colloids Surf. A: Physicochem. Eng. Aspects. 2008. V. 330. P. 55–61.
(check this in PDF content)
8
Sheng G.D., Shao D.D., Ren X.M., Wang X.Q., LiJ. X., Chen Y.X., Wang X.K. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes // J. Hazard. Mater. 2010. V. 178. P. 505–516.
(check this in PDF content)
9
Елецкий А.В. Сорбционные свойства углеродных наноструктур // Успехи физических наук. 2004. Т. 174. No 11. С. 1191–1231.
(check this in PDF content)
10
Мележик А.В., Першин В.Ф., Меметов Н.Р., Ткачев А.Г. Механохимический синтез графеновых нанопластинок из расширенного соединения графита // Российские нанотехнологии. 2016. Т.11. No 7–8. С. 421–429.
(check this in PDF content)
11
Melezhyk A.V., Shuklinov A.V., Bychkov O.N., Tkachev A.G. Study of buckypaper made of carbon nanotubes Taunit-4 // Transactions TSTU. 2013. V. 19. No 2. P. 325–333.
(check this in PDF content)
12
Dursun Y.A.A Comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger // Biochem. Eng. 2006. V. 28. P. 187–195.
(check this in PDF content)
13
Brunader S. The Adsorption of Gases and Vapors. Vol. 1. London: Oxford University Press, 1942.
(check this in PDF content)
14
Temkin M.J., Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts // Acta Physicochim. U.R.S.S. 1940. V. 12. P. 217–222.
(check this in PDF content)
15
Aharoni C., Ungarish M. Kinetics of activated chemisorption. Part 2 — Theoretical models // J. Chem. Soc. Faraday Trans. 1977. V. 73. P. 456–464.
(check this in PDF content)
16
Dubinin M.M., Radushkevich L.V. Equation of the characteristic curve of activated charcoal // Proc. Acad. Sci. Of USSR, Phys. Chem. Sect. 1947. V. 55. P. 331–333.
(check this in PDF content)
17
Sekar M., Sakthi V., Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell // Colloid Interface Sci. 2004. V. 279. P. 307–313.
(check this in PDF content)
18
Ngah W.S.W., Hanafiah M.A.K.M. Surface modification of rubber (heveabrasiliensis) leaves for the adsorption of copper ions: Kinetic, thermodynamic and binding mechanism // J. Chem. Biotechnol. 2008. V. 84. No 2. P. 192–201.
(check this in PDF content)
19
Castro C.S., Guerreiro M.C., Goncalves M., Oliveira L.C.A., Anastacio A.S. Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium // J. Hazard. Mater.
(check this in PDF content)
20
9. V. 164. No 2–3. P. 609–614. 20. Agdi K., Bouaid A., Esteban A.M., Hernando P.F., Azmani A., Camara C. Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earthremediation method // J. Environ. Monitoring. 2000. V. 2. No 5. P. 420–423.
(check this in PDF content)
21
Lemic J., Kovacevic D., Tomasevic-Canovic M., Kovacevic D., Stanic T., Pfend R. Removal of atrazine, lindane and diazinone from water by organo-zeolites // Water Res. 2006. V. 40. No 5. P. 1079–1085.
(check this in PDF content)
22
Li C., Wang L., Shen Y. The removal of atrazine, simazine, and prometryn by granular activated carbon in aqueous solution // Desalination Water Treatment. 2014. V. 52. P. 3510–3516.
(check this in PDF content)
23
Zhang Y., Li Y.M., Zheng X.M. Removal of atrazine by nanoscale zero valent iron supported on organobentonite // Sci. Total Environ. 2011. V. 409. No 3. P. 625–630.
(check this in PDF content)