The 36 references in paper О. Захарова В., А. Гусев А., Ю. Алтабаева В., С. Перова Ю. (2018) “БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВОЗДЕЙСТВИЯ СВЕЖЕПРИГОТОВЛЕННЫХ И СУТОЧНЫХ ВОДНЫХ ДИСПЕРСИЙ НАНОЧАСТИЦ МЕДИ И ОКСИДА МЕДИ НА БАКТЕРИИ E. COLI” / spz:neicon:nanorf:y:2018:i:4:p:69-75

1
Kolar M., Urbanek K., Latal T. Antibiotic selective pressure and development of bacterial resistance // Int. J. Antimicrob. Agents. 2001. V. 17. P. 357–363.
(check this in PDF content)
2
Antibiotic resistance major public health problem [Digital resource] — URL: http:// www.medicalnewstoday.com/articles/252956.php
(check this in PDF content)
3
What is antibiotic resistance and why is it a problem? [Digital resource] // Alliance for the Prudent Use of Antibiotics (APUA) — URL: http://www.tufts.edu/med/apua/about_issue/ antibiotic_res.shtml
(check this in PDF content)
4
WHO report published on April 30, 2014 Atibiotic resistance reveals serious, worldwide threat to public health [Digital resource] // World Health Organization. Media centre URL: http://www.who.int/mediacentre/news/releases/2014/amr-report/ru/ (accessed: 10.07.2014)
(check this in PDF content)
5
Wang L., Hu Ch., and Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future // Int. J Nanomedicine. 2017. V. 12. P. 1227–1249.
(check this in PDF content)
6
Gould I.M., Bal A.M. New antibiotic agents in the pipeline and how they can overcome microbial resistance // Virulence. 2013. V. 4. No 2. P. 185–191.
(check this in PDF content)
7
Wright G.D. Something new: revisiting natural products in antibiotic drug discovery // Can. J Microbiol. 2014. V. 60. No 3. P. 147–154.
(check this in PDF content)
8
Sengupta S., Chattopadhyay M.K., Grossart H.P. The multifaceted roles of antibiotics and antibiotic resistance in nature // Front Microbiol. 2013. V.4. P. 47.
(check this in PDF content)
9
Centers for disease control and prevention, Office of infectious disease antibiotic resistance threats in the United States, 2013. Apr, 2013. Available at: http://www.cdc.gov/drugresistance/ threat-report-2013. Accessed January 28, 2015.
(check this in PDF content)
10
Tenover F.C. Mechanisms of antimicrobial resistance in bacteria // Am J Med. 2006. V. 119. No 6. P. S10.
(check this in PDF content)
11
Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study // Int. J. Nanomed. 2012. V. 7. P. 6003–6009.
(check this in PDF content)
12
Liu W., Su P., Chen S., Wang N., Ma Y., Liu Y., Wang J., Zhang Z., Li H., Webster T.J. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility // Nanoscale. 2014. V. 6. P. 9050–9062.
(check this in PDF content)
13
Besinis A., De Peralta T., Handy R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays // Nanotoxicology. 2014. V. 8. No 1. P. 1–16.
(check this in PDF content)
14
Peng C., Zhang W., Gao H., Li Y., Tong X., Li K., Zhu X., Wang Y., Chen Y. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments // Nanomaterials (Basel). 2017. V. 22. P. 7.
(check this in PDF content)
15
Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity // J Nanobiotechnology. 2017. V. 15. P. 65.
(check this in PDF content)
16
Hajipour M.J., Fromm K.M., Ashkarran A.A., Jimenez de Abe-rasturi D., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. Antibacterial properties of nanoparticles // Trends Biotechnol. 2012. V. 30. No 10. P. 499–511.
(check this in PDF content)
17
Vimbela G.V., Ngo S.M., Fraze C., Yang L., Stout D.A. Antibacterial properties and toxicity from metallic nanomaterials // Int. J. Nanomedicine. 2017. V. 12. P. 3941–3965.
(check this in PDF content)
18
Zhang W., Li Y., Niu J., Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects // Langmuir. 2013. V. 29. No 15. P. 4647–4651.
(check this in PDF content)
19
Nieder R., Benbi D.K., Reichl F.X. (2018) Microelements and their role in human health. Soil components and human health. Springer, Dordrecht. рр. 317–374.
(check this in PDF content)
20
Prashanth L., Kattapagari K.K., Chitturi R.T., Baddam V.R.R., Prasad L.K. A review on role of essential trace elements in health and disease // J. Dr. NTR Univ. Health Sci. 2015. V. 4. No 2. P. 75–85.
(check this in PDF content)
21
Gunawan C., Teoh W.Y., Marquis Ch.P., Amal R. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts // ACS Nano. 2011. V. 5. No 9. P. 7214–7225.
(check this in PDF content)
22
Dimkpa Ch.O., Calder A., Britt D.W., McLean J.E., Anderson A.J. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions // Environ Pollut. 2011. V. 159. No 7. P. 1749–1756.
(check this in PDF content)
23
DeAlba-Montero I., Guajardo-Pacheco J., Morales-Sánchez E., Araujo-Martínez R., Loredo-Becerra G.M., Martínez-Castañón G.A., Ruiz F., Compeán Jasso M.E.. Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract // Bioinorg. Chem. Appl. 2017. P. 1064918.
(check this in PDF content)
24
Godymchuk A., Frolov G., Gusev A., Zakharova O., Yunda E., Kuznetsov D., Kolesnikov E. Antibacterial properties of copper nanoparticle dispersions: influence of synthesis conditions and physicochemical characteristics // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 98. P. 012033.
(check this in PDF content)
25
Zakharova O.V., Godymchuk A.Yu., Gusev A.A., Gulchenko S.I., Vasyukova I.A., Kuznetsov D.V. Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes // BioMed. Res. Int. 2015. P. 412530.
(check this in PDF content)
26
Ren G., Hu D., Cheng E.W., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications // Int. J. Antimicrob. Agents. 2009. V. 33. No 6. P. 587–590.
(check this in PDF content)
27
Hsueh Y.H., Tsai P.H., Lin K.S. pH-Dependent antimicrobial properties of copper oxide nanoparticles in staphylococcus aureus // Int. J. Mol. Sci. 2017. V. 8. P. 18 (4 pp.).
(check this in PDF content)
28
Baranwal A., Srivastava A., Kumar P., Bajpai V.K., Maurya P.K., Chandra P. Prospects of nanostructure materials and their composites as antimicrobial agents // Front Microbiol. 2018. V. 9. P. 422.
(check this in PDF content)
29
Дезинфицирующее средство «Ника-хлор» [электронный ресурс] — URL: http:// geniks.ru/catalog/medical/hlors/
(check this in PDF content)
30
Diez D.M., Barr Ch.D., Mine C.R. (2017). OpenIntro Statistics (3rd ed.). OpenIntro. Retrieved 11 November 2017.
(check this in PDF content)
31
McQuillan J.S., Shaw A.M. Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile // Nanotoxicology. 2014. V. 8. P. 177–184.
(check this in PDF content)
32
Wang D., Lin Z., Wang T., Yao Z., Qin M., Zheng S., Lu W. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? // J. Hazard Mater. 2016. V. 5. P. 328–334.
(check this in PDF content)
33
Годымчук, А.Ю., Савельев Г.Г., Горбатенко Д.В. Растворение нанопорошков меди в неорганических биологических средах // Журн. общей химии. 2010. Т. 80. No 5. С. 711–718.
(check this in PDF content)
34
Nair S., Sasidharan A., Rani V.V.D., Menon D., Manzoor K., Raina S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells // J. Mater. Sci. Mater. Med. 2009. V. 20. No 1. P. 235–241.
(check this in PDF content)
35
Martínez-Castañón G.A., Niño-Martínez N., Martínez-Gutierrez F., Martínez-Mendoza J.R., Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes // J. Nanopart. Res. 2008. V. 10. No 8. P. 1343–1348.
(check this in PDF content)
36
Karlsson H.L., Gustafsson J., Cronholm P., M ̈oller L. Sizedependent toxicity of metal oxide particles — a comparison between nano- and micrometer size // Toxicol. Lett. 2009. V. 188. No 2. P. 112–118.
(check this in PDF content)