The 39 references in paper Д. Чумаков С., А. Соколов О., В. Богатырев А., О. Соколов И., Н. Селиванов Ю., Л. Дыкман А. (2019) “«ЗЕЛЕНЫЙ» СИНТЕЗ НАНОЧАСТИЦ ЗОЛОТА С ИСПОЛЬЗОВАНИЕМ КУЛЬТУР КЛЕТОК ARABIDOPSIS THALIANA И DUNALIELLA SALINA” / spz:neicon:nanorf:y:2018:i:0:p:85-91

1
Elahi N., Kamali M., Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review // Talanta. 2018. V. 184. P. 537–556.
(check this in PDF content)
2
Dykman L.A., Khlebtsov N.G. Gold nanoparticles in biomedical applications. Boca Raton: CRC Press, 2017. 332 p.
(check this in PDF content)
3
Jimenez-Ruiz A., Perez-Tejeda P., Grueso E., Castillo P.M., Prado-Gotor R. Nonfunctionalized gold nanoparticles: synthetic routes and synthesis condition dependence // Chem Eur J. 2015. V. 21. No 27. P. 9596–9609.
(check this in PDF content)
4
Govindaraju S., Yun K. Synthesis of gold nanomaterials and their cancer-related biomedical applications: an update // 3 Biotech. 2018. V. 8. No 2. Art. No 113 (13 p.).
(check this in PDF content)
5
Adil S.F., Assal M.E., Khan M., Al-Warthan A., Siddiquia M.R.H., Liz-Marzán L.M. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry // Dalton Trans. 2015. V. 44. No 21. P. 9709–9717.
(check this in PDF content)
6
Palomo J.M., Filice M. Biosynthesis of metal nanoparticles: novel efficient heterogeneous nanocatalysts // Nanomaterials. 2016. V. 6. No 5. Art. No 84 (16 p.). которые клеточные культуры направленно экскретируют во внешнюю среду. Экстраклеточные продукты значительно отличаются от внутриклеточных метаболитов и обеспечивают межклеточный транспорт, а также регуляторные функции и сигнальную коммуникацию клеток в культуре. ЗАКЛЮЧЕНИЕ Таким образом, обе исследованные культуры растительных клеток — A. thaliana и D. salina — обладали способностью восстанавливать соли золота с образованием наночастиц. Полученные ЗНЧ отличались полидисперсностью и полиморфностью. Диаметр ЗНЧ, полученных при использовании для синтеза D. salina, оказался меньше, чем при использовании A. thaliana —
(check this in PDF content)
7
Nadeem M., Abbasi B.H., Younas M., Ahmad W., Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles // Green Chem Lett Rev. 2017. V. 10. No 4. P. 216–227.
(check this in PDF content)
8
Shankar P.D., Shobana S., Karuppusamy I., Pugazhendhi A., Ramkumar V.S., Arvindnarayan S., Kumar G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications // Enzyme Microb Technol. 2016. V. 95. P. 28–44.
(check this in PDF content)
9
Rajeshkumar S., Malarkodi C., Gnanajobitha G., Paulkumar K., Vanaja M., Kannan C., Annadurai G. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization // J Nanostruct Chem. 2013. V. 3. Art. No 44 (7 p.).
(check this in PDF content)
10
Isaac G., Renitta R.E. Brown algae mediated synthesis, characterization of gold nanoparticles using Padina pavonica and their antibacterial activity against human pathogens // Int J Pharm Tech Res. 2015. V. 8. No 9. P. 31–40.
(check this in PDF content)
11
Sharma B., Purkayastha D.D., Hazra S., Gogoi L., Bhattaacharjee C.R., Ghosh N.N., Rout J. Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa // Mat Lett. 2014. V. 116. P. 94–97.
(check this in PDF content)
12
Parial D., Pal R. Green synthesis of gold nanoparticles using cyanobacteria and their characterization // Indian J Appl Res. 2014. V. 4. No 1. P. 69–72.
(check this in PDF content)
13
Tejaswi T., Anand C.R., Lakshmana R.D.C. Green synthesis of nanoparticles: current prospectus // Nanotechnol Rev. 2015. V. 4. No 4. P. 303–323.
(check this in PDF content)
14
Масюк Н.П. Морфология, систематика, экология, географическое распространение рода Dunaliella Teod. и перспективы его практического использования. Киев: Наукова думка, 1973. 245 с.
(check this in PDF content)
15
Богатырев В.А., Голубев А.А., Селиванов Н.Ю., Прилепский А.Ю., Букина О.Г., Пылаев Т.Е., Бибикова О.А., Дыкман Л.А., Хлебцов Н.Г. Лабораторная тест-система оценки токсичности наноматериалов для микроводоросли Dunaliella salina // Российские нанотехнологии. 2015. Т. 10. No 1–2. С. 92–99.
(check this in PDF content)
16
Golubev A.A., Prilepskii A.Y., Dykman L.A., Khlebtsov N.G., Bogatyrev V.A. Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity // Tox Sci. 2016. V. 151. No 1. P. 115–125.
(check this in PDF content)
17
Sheu M.J., Huang G.J., Wu C.H., Chen J.S., Chang H.Y., Chang S.J., Chung J.G. Ethanol extract of Dunaliella salina induces cell cycle arrest and apoptosis in A549 human non-small cell lung cancer cells // In Vivo. 2008. V. 22. No 3. P. 369–378.
(check this in PDF content)
18
Raja R., Hemaiswarya S., Balasubramanyam D., Rengasamy R. Protective effect of Dunaliella salina (Volvocales, Chlorophyta) against experimentally induced fibrosarcoma on wistar rats // Microbiol Res. 2007. V. 162. No 2. P. 177–184.
(check this in PDF content)
19
Mohseniazar M., Barin M., Zarredar H., Alizadeh S., Shanehbandi D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles // BioImpacts. 2011. V. 1. No 3. P. 149–152.
(check this in PDF content)
20
Singh A.K., Tiwari R., Kumar V., Singh P., Riyazat Khadim S.K., Tiwari A., Srivastava V., Hasan S.H., Asthana R.K. Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential // J Photochem Photobiol B. 2017. V. 166. P. 202–211.
(check this in PDF content)
21
Iravani S. Green synthesis of metal nanoparticles using plants // Green Chem. 2011. V. 13. No 10. P. 2638–2650.
(check this in PDF content)
22
Siddiqi K.S., Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system // J Trace Elem Med Biol. 2017. V. 40. P. 10–23.
(check this in PDF content)
23
Shukla D., Krishnamurthy S., Sahi S.V. Microarray analysis of Arabidopsis under gold exposure to identify putative genes involved in the synthesis of gold nanoparticles (AuNPs) // Genom Data. 2015. V. 3. P. 100–102.
(check this in PDF content)
24
Taylor A.F., Rylott E.L., Anderson C.W.N., Bruce N.C. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold // PLoS One. 2014. V. 9. No 4. Art. No e93793 (10 p.).
(check this in PDF content)
25
Tiwari M., Krishnamurthy S., Shukla D., Kiiskila J., Jain A., Datta R., Sharma N., Sahi S.V. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis // Sci Rep. 2016. V. 6. Art. No 21733 (13 p.).
(check this in PDF content)
26
Rains D.W. Plant tissue and protoplast culture: applications to stress physiology and biochemistry. In: Jones H.G., Flowers T.J., Jones M.B. (Eds.) Plants under Stress. Cambridge: Cambridge University Press, 2008. P. 181–196.
(check this in PDF content)
27
Селиванов Н.Ю., Селиванова О.Г., Соколов О.И., Соколова М.К., Соколов А.О., Богатырев В.А., Дыкман Л.А. Влияние наночастиц золота и серебра на рост суспензионной культуры клеток Arabidopsis thaliana // Российские нанотехнологии. 2017. Т. 12. No 1–2. С. 90–96.
(check this in PDF content)
28
Iyer R.I., Panda T. Biosynthesis of gold and silver nanoparticles using extracts of callus cultures of pumpkin (Cucurbita maxima) // J Nanosci Nanotechnol. 2018. V. 18. No 8. P. 5341–5353.
(check this in PDF content)
29
Бутенко Р.Г. Культура клеток растений и биотехнология. М.: Наука, 1991. 279 с.
(check this in PDF content)
30
Barkla B.J., Vera-Estrella R., Pantoja O. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration // Methods Mol Biol. 2014. V. 1062. P. 53–62.
(check this in PDF content)
31
Shaish A., Avron M., Ben-Amotz A. Effect of inhibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil // Plant Cell Physiol. 1990. V. 31. No 5. P. 689–696.
(check this in PDF content)
32
Shenk R.U., Hildebrandt A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures // Can J Bot. 1972. V. 50. No 1. P. 199–204.
(check this in PDF content)
33
Степанченко Н.С., Фоменков А.А., Мошков И.Е., Ракитин В.Ю., Новикова Г.В., Носов А.В. Взаимодействие фитогормонов в контроле пролиферации культивируемых in vitro клеток этилен-нечувствительных мутантов Arabidopsis thaliana // Доклады академии наук. 2012. Т. 442. No 5. С. 714–717.
(check this in PDF content)
34
Хлебцов Б.Н., Хлебцов Н.Г. Об измерении размера золотых наночастиц методом динамического светорассеяния // Коллоидный журнал. 2011. Т. 73. No 1. С. 105–114.
(check this in PDF content)
35
Khan M., Shaik M.R., Adil S.F., Khan S.T., Al-Warthan A., Siddiqui M.R.H., Tahir M.N., Tremel W. Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis // Dalton Trans. 2018. V. 47. No 35. P. 11988–12010.
(check this in PDF content)
36
Mishra A., Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress // Bioresour Technol. 2009. V. 100. No 13. P. 3382–3386.
(check this in PDF content)
37
Ouano J.J.S., Que M.C.O., Basilia B.A., Alguno A.C. Controlling the absorption spectra of gold nanoparticles synthesized via green synthesis using brown seaweed (Sargassum crassifolium) extract // Key Eng Mater. 2018. V. 772. P. 78–82.
(check this in PDF content)
38
Patil M.P., Kim G.-D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications // Colloids Surf B. 2018. V. 172. P. 487–495.
(check this in PDF content)
39
Khan A.U., Khan M., Malik N., Cho M.H., Khan M.M. Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications // Bioprocess Biosyst Eng. 2018. DOI: 10.1007/s00449-018-2012-2
(check this in PDF content)