The 28 references in paper Ю. Плеханова В., С. Тарасов Е., А. Быков Г., Н. Присяжная В., Т. Тенчурин Х., С. Чвалун Н., А. Орехов С., А. Шепелев Д., П. Готовцев М., А. Решетилов Н. (2019) “АНОД БИОТОПЛИВНОГО ЭЛЕМЕНТА НА ОСНОВЕ УГЛЕРОДНЫХ ВОЛОКНИСТЫХ МАТЕРИАЛОВ С ИММОБИЛИЗОВАННЫМИ БАКТЕРИЯМИ И ИХ МЕМБРАННЫМИ ФРАКЦИЯМИ” / spz:neicon:nanorf:y:2018:i:0:p:77-84

1
Mathur R.B., Maheshwari P.H., Dhami T.L., Sharma R.K., Sharma C.P. Processing of carbon composite paper as electrode for fuel cell // J Power Sources. 2006. V. 161. P. 790–798.
(check this in PDF content)
2
Moreno-Fernandez G., Ibañez J., Rojo J.M., Kunowsky M. Activated carbon fiber monoliths as supercapacitor electrodes // Adv Mater Sci Engineering. 2017. V. 2017. Article ID 3625414. 8 p.
(check this in PDF content)
3
Minke C., Kunz U., Turek T. Carbon felt and carbon fiber-A techno-economic assessment of felt electrodes for redox flow battery applications // J of Power Sources. 2017. V. 342. P. 116–124.
(check this in PDF content)
4
Yang Y., Simeon F., Hatton T.A., Rutledge G.C. Polyacrylonitrile-based electrospun carbon paper for electrode applications // J Appl Polym Sci. 2012. V. 124. No 5. P. 3861–3870.
(check this in PDF content)
5
Zheng H., Xue H., Zhang Y., Shen Z. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst // Biosens Bioelectron. 2002. V. 17. No 6–7. P. 541–545.
(check this in PDF content)
6
Campbell A.S., Jose M.V., Marx S., Cornelius S., Koepsel R.R., Islam M.F., Russell A.J. Improved power density of an enzymatic biofuel cell with fibrous supports of high curvature // RSC Adv. 2016. V. 6. P. 10150–10158.
(check this in PDF content)
7
Tenchurin T.K., Reshetilov A.N., Plekhanova Yu.V., Tarasov S.E., Bykov A.G., Gutorov M.A., Alferov S.V., Chvalun S.N., Orekhov A.S., Shepelev A.D., Gotovtsev P.M., Vasilov R.G. Carbon superfine materials as a promising material for Gluconobacter oxydans based microbial fuel cells // IOP Conf Ser: Earth Environ Sci. 2018. V. 121. P. 022005.
(check this in PDF content)
8
Wang Ya.Q., Huang H.-X., Li B., Li W.-Sh. Novelly developed three-dimensional carbon scaffold anodes from polyacrylonitrile for microbial fuel cells // J Mater Chem A. 2015. V. 3. P. 5110–5118.
(check this in PDF content)
9
Khan M.R., Baranitharan E., Prasad D.M.R. Treatment of palm oil mill effluent in microbial fuel cell using polyacrylonitrile carbon felt as electrode // J Med Bioengin. 2013. V. 2. No 4. P. 252–256.
(check this in PDF content)
10
Heikkila P., Harlin A. Parameter study of electrospinning of polyamide-6 // Eur Polym J. 2008. V. 44. P. 3067–3079.
(check this in PDF content)
11
Rutledge G.C., Fridrikh S.V. Formation of fibers by electrospinning // Adv Drug Deliv Rev. 2007. V. 59. P. 1384–1391.
(check this in PDF content)
12
Bhattacharjee P.K., Rutledge G.C. Electrospinning and polymer nanofibers: process fundamentals. In Ducheyne P., Healy K. E., Hutmacher D. W., Grainger D., Kirkpatrick C. J. (Eds.) Comprehensive Biomaterials. Amsterdam Netherlands: Elsevier, 2011. V. 1. P. 497–512.
(check this in PDF content)
13
Franks A.E., Nevin K.P. Microbial fuel cells, a current review // Energies. 2010. V. 3. P. 899–919.
(check this in PDF content)
14
Logan B.E., Rabaey K. Conversion of wastes into bioelectricity and chemicals using microbial electrochemical technologies // Sci. 2012. V. 337. No 6095. P. 686–690.
(check this in PDF content)
15
Bertokova А., Bertok T., Filip J., Tkáč J. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells // Chem Pap. 2015. V. 69. P. 27–41.
(check this in PDF content)
16
Решетилов А.Н., Плеханова Ю.В., Тарасов С.Е., Быков А.Г., Гуторов М.А., Алферов С.В., Тенчурин Т.Х., Чвалун С.Н., Орехов А.C., Шепелев А.Д. Готовцев П.М., Василов Р.Г. Оценка свойств биоэлектродов на основе углеродных высокодисперсных материалов, содержащих модельные микроорганизмы Gluconobacter // Российские нанотехнологии. 2017. Т. 12. No 1–2. С. 83–89.
(check this in PDF content)
17
Indzhgiya E., Ponamoreva O.N., Alferov V.A., Reshetilov N.A., Lo G. Interaction of ferrocene mediators with Gluconobacter oxydans immobilized whole cells and membrane fractions in oxidation of ethanol // Electroanalysis. 2012. V. 24. No 4. P. 924–930.
(check this in PDF content)
18
Reshetilov A.N., Kitova A.E., Kolesov V.V., Yaropolov A.I. Mediator-free bioelectrocatalytic oxidation of ethanol on an electrode from thermally expanded graphite modified by Gluconobacter oxydans membrane fractions // Electroanalysis. 2015. V. 27. No 6. P. 1443–1448.
(check this in PDF content)
19
Алферов С.В., Возчикова С.В., Арляпов В.А., Алферов В.А., Решетилов А.Н. Особенности конкуренции между кислородом и 2,6-дихлорфенолиндофенолом в условиях работы микробного топливного элемента // Прикладная биохимия и микробиология. 2017. Т. 53. No 2. C. 244–250.
(check this in PDF content)
20
Дубова Е.А., Больбит Н.М., Дуфлот В.Р. Влияние способа синтеза на микроструктуру цепей и реологию растворов полиакрилонитрила // Естественные и технические науки. 2010. Т. 49. No 4. С. 54–57.
(check this in PDF content)
21
Решетилов А.Н., Плеханова Ю.В., Тарасов С.Е., Арляпов В.А., Колесов В.В., Гуторов М.А., Готовцев П.М., Василов Р.Г. Влияние некоторых углеродных наноматериалов на окисление этилового спирта бактериальными клетками Gluconobacter oxydans // Прикладная биохимия и микробиология. 2017. Т. 53. No 1. С. 115–122.
(check this in PDF content)
22
Wang X., Gu H., Yin F., Tu Y. A glucose biosensor based on Prussian blue/chitosan hybrid film // Biosens Bioelectron. 2009. V. 24. No 5. P. 1527–1530.
(check this in PDF content)
23
Logan B.E., Regan J.M. Microbial fuel cells-challenges and applications // Environ Sci Technol. 2008. V. 40. P. 5172–5180.
(check this in PDF content)
24
Kumar S., Acharya S.K. 2,6-Dichloro-phenol indophenol prevents switch-over of electrons between the cyanide-sensitive and insensitive pathway of the mitochondrial electron transport chain in the presence of inhibitors // Anal Biochem. 1999. V. 268. No 1. P. 89–93.
(check this in PDF content)
25
Das P., Das M., Chinnadayyala S.R., Singha I.M., Goswami P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications // Biosens Bioelectron. 2016. V. 79. P. 386–397.
(check this in PDF content)
26
Falk M., Blum Z., Shleev S. Direct electron transfer based enzymatic fuel cells // Electrochim Acta. 2012. V. 82. P. 191–202.
(check this in PDF content)
27
Mustakeem. Electrode materials for microbial fuel cells: nanomaterial approach // Mater Renew Sustain Energy. 2015. V. 4. P. 22 (11 p). DOI 10.1007/s40243-015-0063-8
(check this in PDF content)
28
Koide S., Sasaki T., Sano R., Mogi H., Fukushi Y., Nishioka Y. Flexible biofuel cell with electrodes modified by glucose oxidase ferrocene and bilirubin oxidase fabricated using microfabrication processes // J Chin Adv Mater Soc. 2014. V. 2. No 3. P. 159–170.
(check this in PDF content)