The 26 references in paper Н. Сухинина С., В. Масалов М., А. Жохов А., И. Ходос И., И. Зверькова И., К. Лью, Дж. Ванг, Г. Емельченко А. (2018) “Синтез и модификация углеродных инвертированных опалоподобных наноструктур на основе антрацена и их электрохимические характеристики” / spz:neicon:nanorf:y:2017:i:2:p:54-61

1
Nishihara H., Kyotani T. Templated Nanocarbons for Energy Storage // Adv. Mater. 2012. V. 24. No 33. P. 4473–4498.
(check this in PDF content)
2
Marsh H., Reinoso F.R. Activated Carbon. UK: Elsevier Ltd. 2006. 536 p.
(check this in PDF content)
3
Beguin F., Frackowiak E. Nanomaterials Handbook / ed. Gogotsi Yury. CRC Press, 2006. Ch. 9. P. 295–320.
(check this in PDF content)
4
Kötz R., Carlen M. Principles and applications of electrochemical capacitors // Electrochim. Acta. 2000. V. 45. P. 2483–2498.
(check this in PDF content)
5
Vix-Guterl C., Saadallah S., Jurewicz K., Frackowiak E., Reda M., Parmentier J. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure // Mater. Sci. Eng. B. 2004. V. 108. P. 148–155.
(check this in PDF content)
6
Conway B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. New-York: Kluwer Academic/Plenum. 1999.
(check this in PDF content)
7
Mastragostino M., Arbizzni C., Paraventi R., Zanelli A. Polymer Selection and Cell Design for Electric-Vehicle Supercapacitors // J. Electrochem. Soc. 2000. V. 147. No 2. P. 407–412.
(check this in PDF content)
8
Harris P.J.F., Burian A., Duber S. High-resolution electron microscopy of a microporous carbon // Philosophical Magazine Letters. 2000. V. 80. No 6. P. 381–386.
(check this in PDF content)
9
Harris P.J.F., Tsang S.C. High-resolution electron microscopy studies of non-graphitizing carbons // Phil. Mag. A. 1997. V. 76. No 3. P. 667–677.
(check this in PDF content)
10
Емельченко Г.А., Масалов В.М, Жохов А.А., Ходос И.И. Микро- и мезопористые углеродные наноструктуры с решеткой инвертированного опала // ФТТ. 2013. Т. 55. No 5. С. 1021–1026.
(check this in PDF content)
11
Mendoza-Sánchez B., Gogotsi Yu. Synthesis of two-dimensional materials for capacitive energy storage // Adv. Mater. 2016. V. 28. P. 6104–6135.
(check this in PDF content)
12
Химия углеводородов нефти / ред. Брукс Б.Т., Бурда С.Э., Куртиц С.А., Шмерлинг Л. Л.: Гостехиздат, 1958. Т. II.
(check this in PDF content)
13
Масалов В.М., Сухинина Н.С., Емельченко Г.А. Коллоидные частицы диоксида кремния для формирования опалоподобных структур // ФТТ. 2011. Т. 53. No 6. С. 1072–1076.
(check this in PDF content)
14
Lozano-Castello D., Lillo-Rodenas M.A., Cazorla-Amoros D., Linares-Solano A. Preparation of activated carbons from Spanish anthracite I. Activation by KOH // Carbon. 2001. V. 39. P. 741–749.
(check this in PDF content)
15
Huang M., Li F., Ji J.Y., Zhang Y.X., Li Zhao X., Gao X. Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors // Cryst. Eng. Comm. 2014. V. 16. P. 2878–2884.
(check this in PDF content)
16
Avena M.J., Vazquez M.V., Carbonio R.E., De Pauli C.P., Macagno V.A. A simple and novel method for preparing Ni(OH)2. Part I: Structural studies and voltammetric response // J. Appl. Electrochem. 1994. V. 24. P. 256–260.
(check this in PDF content)
17
Li B., Xie Y., Wu Ch., Li Zh., Zhang J. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures // Materials Chemistry and Physics. 2006. V. 99. P. 479–486.
(check this in PDF content)
18
Sukhinina N.S., Masalov V.M., Zhokhov A.A., Zverkova I.I., Emelchenko G.A. C-IOP/NiO/Ni7S6 composite with the inverse opal lattice as an electrode for supercapacitors // Proceedings of SPIE. Nanotechnology VII / ed. by I.M. Tiginyanu, SPIE, Bellingham, WA. 2015. V. 9519. P. 95190N-1–95190N-6.
(check this in PDF content)
19
Gao Z., Wang J., Li Zh., Yang W., Wang B., Hou M., He Y., Liu Q., Mann T., Yang P., Zhang M., Liu L. Graphene nanosheet/Ni2+/ Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor // Chem. Mater. 2011. V. 23. P. 3509–3516.
(check this in PDF content)
20
Chen S., Zhu J., Wu X., Han Q., Wang X. Graphene oxide-MnO2 nanocomposites for supercapacitors // ACS Nano. 2010. V. 4, No 5. P. 2822–2830.
(check this in PDF content)
21
Zhao X., Wang A., Yan J., Sun G., Sun L., Zhang T. Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons // Chem. Mater. 2010. V. 22. No 19. P. 5463–5473.
(check this in PDF content)
22
Lin R.Y., Hu D.C., Chang Y.A. Metallurgical transactions Bprocess // Metallurgy. 1978. V. 9. P. 531.
(check this in PDF content)
23
Okamoto H.J. Ni-S (Nickel-Sulfur) // Phase Equilib. Diffus. 2009. V. 30. No 1. P. 123.
(check this in PDF content)
24
Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. V. 60. P. 309.
(check this in PDF content)
25
Gor G.Yu., Thommes M., Cychosz K.A., Neimark A.V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption // Carbon. 2012. V. 50. P. 1583–1590.
(check this in PDF content)
26
Hung K., Masarapu Ch., Ko T., Wei B. Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric // J. of Power Sources. 2009. V. 193. P. 944–949.
(check this in PDF content)