The 38 references in paper Е. Миронова Ю., М. Ермилова М., Н. Орехова В., А. Толкачева С., С. Шкерин Н., А. Ярославцев Б. (2018) “Превращения этанола на катализаторах на основе нанопористого алюмината кальция — майенита (Ca12Al14O33) и майенита, легированного медью” / spz:neicon:nanorf:y:2017:i:2:p:23-29

1
Lu G.Q., Zhao X.S. Nanoporous materials: An overview. In: Nanoporous Materials: Science and Engineering. Series on Chemical Engineering. V. 4. UK: Imperial College Press. 2004. P. 1–12.
(check this in PDF content)
2
Yang S., Kondo J.N., Hayashi K., Hirano M., Domen K., Hosono H. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO×7Al2O3 // Chem. Mater. 2004. V. 16. P. 104–110.
(check this in PDF content)
3
Tsvetkov D.S., Steparuk A.S., Zuev A.Yu. Defect structure and related properties of mayenite Ca12Al14O33. // Solid State Ionics. 2015. V. 276. P. 142–148.
(check this in PDF content)
4
Толкачева А.С., Шкерин С.Н., Корзун И.В., Титова С.Г., Федорова О.М., Ординарцев Д.П. Высокотемпературная граница существования структуры майенита // Фазовые переходы, упорядоченные состояния и новые материалы (электронный журнал). 2011. No 5. С. 1–8.
(check this in PDF content)
5
Толкачева А.С., Шкерин С.Н., Корзун И.В., Плаксин С.В., Хрустов В.Р., Ординарцев Д.П. Фазовые переходы в майените Ca12Al14O33 // Журн. неорган. химии. 2012. Т. 57. No 7. С. 1089–1093.
(check this in PDF content)
6
Teusner M., De Souza R.A., Krause H., Ebbinghaus S.G., Martin M. Oxygen transport in undoped and doped mayenite // Solid State Ionics. 2016. V. 284. P. 25–27.
(check this in PDF content)
7
Lacerda M., Irvine J.T.S., Glasser F.P., West A.R. High oxide ion conductivity in Са12Аl14O33 // Nature. 1988. V. 332. No 7. P. 525–526.
(check this in PDF content)
8
Li C., Hirabayashi D., Suzuki K. A crucial role of O2ˉ and O22ˉ on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33 // Appl. Catal. B: Environmental. 2009. V. 88. P. 351–360.
(check this in PDF content)
9
Sato K., Fujita S., Suzuki K., Mori T. High performance of Nisubstituted calcium aluminosilicate for partial oxidation of methane into syngas // Catal. Comm. 2007. V. 8. P. 1735–1738.
(check this in PDF content)
10
Dang C., Yu H., Wang H., Peng F., Yang Y. A bi-functional Co– CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen // Chem. Eng. J. 2016. V. 286. P. 329–338.
(check this in PDF content)
11
Zamboni I., Courson C., Niznansky D., Kiennemann A. Simultaneous catalytic H2 production and CO2 capture in steam reforming of toluene as tar model compound from biomass gasification // App. Catal. B: Environmental. 2014. V. 145. P. 63–72.
(check this in PDF content)
12
Cesário M.R., Barros B.S., Courson C., Melo D.M.A., Kiennemann A. Catalytic performances of Ni–CaO–mayenite in CO2 sorption enhanced steam methane reforming // Fuel Proc. Technol. 2015. V. 131. P. 247–253.
(check this in PDF content)
13
Di Carlo A., Borello D., Sisinni M., Savuto E., Venturini P., Bocci E., Kuramoto K. Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst // Int. J. Hydrogen Energy.2015. V. 40. P. 9088–9095.
(check this in PDF content)
14
Li C., Hirabayashi D., Suzuki K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas // Fuel Processing Technology. 2009. V. 90. P. 790–796.
(check this in PDF content)
15
Proto A., Cucciniello R., Genga A, Capacchione C. A study on the catalytic hydrogenation of aldehydes using mayenite as active support for palladium // Catalysis Communications. 2015. V. 68. P. 41–45.
(check this in PDF content)
16
Tolkacheva A.S., Shkerin S.N., Kalinina E.G., Filatov I.E. and Safronov A.P. Сeramics with Mayenite Structure: Molecular Sieve for Helium Gas // Russian Journal of Applied Chemistry. 2014. V. 87. No 4. P. 536−538.
(check this in PDF content)
17
Suzuki K. Application to catalyst of mayenite consisting of ubiquitous elements // Transactions of JWRI. 2010. V. 39. No 2. P. 281–283.
(check this in PDF content)
18
Rossetti I., Compagnoni M., Torli M. Process simulation and optimization of H2 production from ethanol steam reforming and its use in fuel cells. 2. Process analysis and optimization // Chemical Engineering Journal. 2015. V. 281. P. 1036–1044.
(check this in PDF content)
19
Hedayati A., Le Corre O., Lacarrière B., Llorca J. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor // Energy. 2016. V. 117. P. 316–324.
(check this in PDF content)
20
Hedayati A., Le Corre O., Lacarrière B., Llorca J. Experimental and exergy evaluation of ethanol catalytic steam reforming in a membrane reactor // Catalysis Today. 2016. V. 268. P. 68–78.
(check this in PDF content)
21
Стенина И.А., Сафронова Е.Ю., Левченко А.В., Добровольский Ю.А., Ярославцев А.Б. Низкотемпературные топливные элементы: перспективы применения для систем аккумулирования энергии и материалы для их разработки // Теплоэнергетика. 2016. No 6. C. 4–18.
(check this in PDF content)
22
Mironova E.Yu, Ermilova M.M., Orekhova N.V., Muraviev D.N., Yaroslavtsev A.B. Production of high purity hydrogen by ethanol steam reforming in membrane reactor // Catalysis Today. 2014. V. 236. P. 64–69.
(check this in PDF content)
23
Palma V., Castaldo F., Ciambelli P., Iaquaniello G., Capitani G. On the activity of bimetallic catalysts for ethanol steam reforming // International journal of hydrogen energy. 2013. V. 38. P. 6633–6645.
(check this in PDF content)
24
Osorio-Vargas P., Flores-González N.A., Navarro R.M., Fierro J.L.G., Campos C.H., Reyes P. Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steamreforming reaction // Catalysis Today. 2015. V. 259. P. 27–38.
(check this in PDF content)
25
González-Gil R., Herrera C., Larrubia M.A., Mariño F., Laborde M., Alemany L.J. Hydrogen production by ethanol steam reforming over multimetallic RhCeNi/Al2O3 structured catalyst. Pilot-scale study // International Journal of Hydrogen Energy. 2016. V. 41. P. 16786–16796.
(check this in PDF content)
26
Pourcelly G. Membranes for low and medium temperature fuel cells. State-of-the-art and new trends // Petroleum Chem. 2011. V. 51. No 7. P. 480–491.
(check this in PDF content)
27
Басов Н.Л., Ермилова М.М., Орехова Н.В., Ярославцев А.Б. Мембранный катализ в процессах дегидрирования и производства водорода // Успехи химии. 2013. Т. 82. No 4. C. 352–368.
(check this in PDF content)
28
Kyriakides A.-S., Rodrıguez-Garcıa L., Voutetakis S., Ipsakis D., Seferlis P., Papadopoulou S. Enhancement of pure hydrogen production through the use of a membrane reactor // International Journal of Hydrogen Energy. 2014. V. 39. No 9. P. 4749–4760.
(check this in PDF content)
29
Lopez P., Mondragon-Galicia G., Espinosa-Pesqueira M.E., Mendoza-Anaya D., Fernandez M.E., Gomez-Cortes A., Bonifacio J., Martınez-Barrera G., Perez-Hernandez R. Hydrogen production from oxidative steam reforming of methanol: Effect of the Cu and Ni impregnation on ZrO2 and their molecular simulation studies // International Journal of Hydrogen Energy. 2012. V. 37. P. 9018–9027.
(check this in PDF content)
30
Marra L., Wolbers P.F., Gallucci F., van Sint Annaland M. Development of a RhZrO2 catalyst for low temperature autothermal reforming of methane in membrane reactors // Catalysis Today. 2014. V. 236. P. 23–33.
(check this in PDF content)
31
Ni Y., Sun Z. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China // Appl. Microbiol. Biotechnol. 2009. V. 83. P. 415–423.
(check this in PDF content)
32
Costa Sousa L., Chundawat S.P., Balan V., Dale B.E. “Cradle-tograve” assessment of existing lignocellulose pretreatment technologies // Current Opinion Biotechnology. 2009. V. 20. No 3. P. 339–347.
(check this in PDF content)
33
Green E. Fermentative production of butanol — the industrial perspective // Curr. Opin. Biotech. 2011. V. 22. P. 337–343.
(check this in PDF content)
34
Wang L., Chen H.Z. Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors // Process Biochemistry. 2011. V. 46. P. 604–607.
(check this in PDF content)
35
Merzhanov A.G. Theory and practice of SHS: worldwide state of the art and the newest results // Int. J. of SHS. 1993. V. 2. No 2. P. 113–158.
(check this in PDF content)
36
Tolkacheva A.S., Shkerin S.N., Plaksin S.V., Vovkotrub E.G., Bulanin K.M., Kochedykov V.A., Ordinartsev D.P., Gyrdasova O.I., and Molchanova N.G. Synthesis of Dense Ceramics of Single-Phase Mayenite (Ca12Al14O32)O // Russian Journal of Applied Chemistry. 2011. V. 84. No 6. P. 907–911.
(check this in PDF content)
37
Bussem W., Eitel A. The structure of pentacalcium trialuminate // Z. Krist. 1936. V. 95. P. 175.
(check this in PDF content)
38
Huang J., Valenzano L., and Sant G. Framework and channel modifications in mayenite (12CaO*7Al2O3) nanocages by cationic doping // Chem. Mater. 2015. V. 27. P. 4731–4741.
(check this in PDF content)