The 21 references in paper Zhanna Savintseva Igorevna, Tatiana Trofimova Nikolaevna, Tatiana Skvortsova Yurievna, Zorya Brodskaya L’vovna, Жанна Савинцева Игоревна, Татьяна Трофимова Николаевна, Татьяна Скворцова Юрьевна, Зоря Бродская Львовна (2014) “Сопоставление информативности МР-перфузии и ПЭТ с [11С]метионином в дифференциации продолженного роста церебральных опухолей и лучевых поражений головного мозга после комбинированного лечения // Direct Comparison of Perfusion Magnetic Resonance Imaging with [11C]Methionine PET in Differentiating Brain Tumor Recurrence From Radiation-Induced Brain Injury after Combined Treatment” / spz:neicon:medvis:y:2014:i:5:p:10-19

1
Скворцова Т.Ю., Бродская З.Л., ГурчинА.Ф., Савинцева Ж.И. Диагностическая точность ПЭТ с [11С]метионином в разграничении продолженного роста первичных церебральных опухолей и лучевых поражений головного мозга. Мед. виз. 2011; 6: 80–92.
(check this in PDF content)
2
Nakajima T., Kumabe T., Kanamory M. et al. Differential diagnosis between radiation necrosis and glioma prog ression using sequential proton magnetic resonance spectroscopy and methionine positron emission tomography. Neurol. Med. Chir. (Tokyo). 2009; 49: 394–401.
(check this in PDF content)
3
Kim Y.H., Oh S.W., Lim Y.J. et al. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of (18)F-FDG PET, (11)C-methionine PET and perfusion MRI. Clin. Neurol. Neurosurg. 2010; 12 (9): 758–765.
(check this in PDF content)
4
Dandois V., Rommel D., Renald L. et al. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J. Neuroradiol. 2010; 37 (2):89–97.
(check this in PDF content)
5
Гомзина Н.А., Кузнецова О.Ф. Получение [11C-метил]L-метионина высокой энантиомерной чистоты путем “on-line” 11C-метилирования. Биоорган. химия. 2011; 17: 1–8.
(check this in PDF content)
6
Sheweiki D., Itin A., Soffer D. et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature. 1992; 359: 843–845.
(check this in PDF content)
7
Bjerkvig R., Lund-Johansen M., Edvarsen K. Tumor cell invasion and angiogenesis in the central nervous system. Curr. Opin. Oncol. 1997; 9: 223–229.
(check this in PDF content)
8
Burger P.C., Boyko O.B. The pathology of central nervous system: radiation injury. In: Radiating injury to the nervous system. Eds Gitin P.H., Leibel S.A., Sheline G.E. New York: Raven Press, 1991. 191–208.
(check this in PDF content)
9
Jain R., Narang J., Sundgren P.M. et al. Treatment induced necrosis versus recurrent/progressing brain tumor: going beyond the boundaries of conventional morphologic imaging. J.Neurooncol. 2010; 100 (1): 17–29.
(check this in PDF content)
10
Kumar A.J., Leeds N.E., Fuller G.N. et al. Malignant gliomas: MR Imaging spectrum of radiation therapy-and chemotherapy-induced necrosis of the brain after treatment. Radiology. 2000; 217: 377–384.
(check this in PDF content)
11
Sugahara T., Korogi Y., Tomiguchi S. et al. Posttherapeutic intraaxisl brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence fromnonneoplastic contrast enhancing. Am. J. Neurorad. 2002; 21: 901–909.
(check this in PDF content)
12
Curnes J.T., Laster D.W., Ball M.R. et al. MRI in radiation injury of the brain. Am. J. Neuroradiol. 1986; 147: 119–124.
(check this in PDF content)
13
Safdari H., Fuentes J.-M., Dubois J.-B. et al. Radiation necrosis of the brain: time of onset and incidence related to total dose and fractionation of radiation. Neuroradiology. 1985; 27: 44–47.
(check this in PDF content)
14
Савинцева Ж.И., Трофимова Т.Н., Скворцова Т.Ю., Бродская З.Л. ПрименениеТ2*МР-перфузии в дифференциальной диагностике продолженного роста церебральных опухолей и лучевых повреждений головного мозга. Мед. виз. 2012; 6: 9–15.
(check this in PDF content)
15
Kracht L.W.,FrieseM., Herholz K. et al. Methyl-[11C]- lmethionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur. J. Nucl. Med. Mol. Imaging. 2003; 30 (6): 868–873.
(check this in PDF content)
16
Okita Y., Kinoshita M., Goto T. et al. (11)C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma: A stereotactic image-histology comparison. Neuroimage. 2010; 49 (4): 2977–2982.
(check this in PDF content)
17
Filss C.P., Galldiks N., Stoffels G. et al. Comparison of
(check this in PDF content)
18
FET PET and perfusion-weighted MR imaging: a PET/ MR imaging hybrid study in patients with brain tumors. J. Nucl. Med. 2014; 55: 540–545. 18. Burger P.C., Mahley M.S. Jr., Dudka L., Vogel F.S. The mor pho logic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer. 1979; 44: 1256–1272.
(check this in PDF content)
19
Yoshii Y. Pathological review of late cerebral radionecrosis. Brain Tumor Pathol. 2008; 25: 51–58. Рис. 6. Применение Т2*-МР перфузии и ПЭТ с [11С]метио нином у пациентов после лучевой терапии с подозрением на ПРО. Т2*ˆперфузия Подозрение на ПРО по данным МРТ с КУ Повышенная фиксация РФП в очаге, подозрительном на ЛП (особенно при вовлечении коры) Очаг КУ в опухоли Визуализация остатка опухоли Пограничные данные МРˆперфузии Очерчивание границ и истинных размеров ПРО ПЭТ с [11С] метионином
(check this in PDF content)
20
Sasaki M., Ichiya Y., Kuwabara Y. et al. Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J. Nucl. Med. 1996; 7: 1174–1176.
(check this in PDF content)
21
Lubelski D., Abdullah K.G., Weil R.J., Marko N.F. Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J. Neurooncol. 2013; 115 (3): 317–322.
(check this in PDF content)