The 37 references in paper Mikhail Dolgushin Borisovich, Akgul Odzharova Atayevna, Pavel Tulin Yevgenyevich, Nina Vikhrova Borisovna, Denis Nevzorov Ilich, Mikhail Menkov Aleksandrovich, Emiliya Nechipai Andreyevna, Ekaterina Kobyakova Alekseyevna, Ali Bekyashev Khasyanovich, Михаил Долгушин Борисович, Акгуль Оджарова Атаевна, Павел Тулин Евгеньевич, Нина Вихрова Борисовна, Денис Невзоров Ильич, Михаил Меньков Александрович, Эмилия Нечипай Андреевна, Екатерина Кобякова Алексеевна, Али Бекяшев Хасьянович (2014) “ПЭТ с18F-холином в диагностике глиальных опухолей головного мозга // Use18F-choline PET in Cerebral Gliomas” / spz:neicon:medvis:y:2014:i:3:p:73-83

1
Haacke E.M., MittalS., Wu Z. et al. SusceptibilityWeighted Imaging: Technical Aspectsand Clinical Applications. Am. J. Neuroradiol. 2009; 30: 19–30.
(check this in PDF content)
2
Пронин И.Н., Туркин А.М., Долгушин М.Б. и др. Тканевая контрастность, обусловленная магнитной восприимчивостью: применение в нейрорентгенологии. Мед. виз. 2011; 1: 8–12.
(check this in PDF content)
3
Schaefer P., Roccatagliata L., Ledezma C. et al. First-pass quantitative CT perfusion identifies thresholds for salvageable penumbra in acute stroke patients treated with intraarterial therapy. Am. J. Neuroradiol.. 2006; 27: 20–25.
(check this in PDF content)
4
Долгушин М.Б., Пронин И.Н., Фадеева Л.М., Корниенко В.Н. Метод КТ-перфузии в дифференциальной диагностике вторичного опухолевого поражения головного мозга. Мед. виз. 2007; 4: 100–106.
(check this in PDF content)
5
Пронин И.Н., Фадеева Л.М., Захарова Н.Е. и др. Перфузионная КТ: исследование мозговой гемодинамики в норме. Мед. виз. 2007; 3: 8–12.
(check this in PDF content)
6
Долгушин М.Б., Пронин И.Н. Перфузионная компьютерная томография в динамической оценке эффективности лучевой терапии при вторичном опухолевом 10_073-083__Dolgushin (11).qxd 7/16/2014 5:25 PM Page 81 поражении головного мозга. Вестн. РОНЦ им. Н.Н. Блохина РАМН. 2008; 4: 36–46.
(check this in PDF content)
7
Burtscher I.M., Skagerberg G., Geijer B. et al. Proton MR spectroscopy and preoperative diagnostic accuracy: An evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. Am. J. Neuroradiol. 2000; 21: 84–93.
(check this in PDF content)
8
Подопригора А.Е., Пронин И.Н., Фадеева Л.М. Протонная магнитно-резонансная спектроскопия в диагностике опухолевых и неопухолевых поражений головного мозга. Вопр. нейрохир. 2000; 3: 7–20.
(check this in PDF content)
9
Ando K., Ishikura R., Nagami Y. et al. Usefulness of Cho/Cr ratio in proton MR spectroscopy for differentiating residual/recurrent glioma from non-neoplastic lesions. Nippon. Igaku Hoshasen Gakkai. 2004; 64: 121–126.
(check this in PDF content)
10
Hollingworth W., Medina L., Lenkinski R. et al. A systematic literature review of magnetic resonance spectroscopy (MRS) for the characterization of brain tumors. Am. J. Neuroradiol. 2006; 27; 7: 1404–1411.
(check this in PDF content)
11
Hara T., Kosaka N., Shinoura N. et al. PET imaging of brain tumor with [methyl-11C] choline. J. Nucl. Med. 1997; 38: 842–847.
(check this in PDF content)
12
Shinoura, N., Nishijima M., Hara T. et al. Brain tumors: detection with C-11 choline PET. Radiology. 1997; 202; 2: 497–503.
(check this in PDF content)
13
Langen K.J., Jarosch M., Muhlensiepen H. et al. Comparison of fluorotyrosinesand methionine uptake in F98 rat gliomas. Nucl. Med. Biol. 2003; 30: 501–508.
(check this in PDF content)
14
Kwee S.A., Ko J.P., Jiang C.S. et al. Solitary brain lesions enhancing at MR imaging: evaluation with fluorine 18 fluorocholine PET. Radiology. 2007; 244: 557–565.
(check this in PDF content)
15
Wyss M.T., Spaeth N., Biollaz G. et al. Uptake of 18FFluorocholine, 18F-FET, and 18F-FDG in C6 gliomas and correlation with 131I-SIP(L19), a marker of angiogenesis. J. Nucl. Med. 2007; 48; 4: 608–614.
(check this in PDF content)
16
Wester H.J., Herz M., Weber W. et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J. Nucl. Med. 1999; 40: 205–212.
(check this in PDF content)
17
Gauthier S., Diksic M., Yamamoto L. et al. Positron emission tomography with [11C] choline in human subjects. Can. J. Neural. Sci. 1985; 12: 214.
(check this in PDF content)
18
Amane S.P., Honig M.A., Milner T.A. et al. Sites of acetylcholine synthesis and release associated with microvessels in cerebral cortex: ultrastructural and neurochemical studies. J. Cereb. Blood Flow Metab. 1987; 7: 5330.
(check this in PDF content)
19
Hamel E., Assumel-Lurdin C., Edvinsson L. et al. Neuronal versusendothelial origin of vasoactive acethylcholine in pial vessels. Brain Res. 1987; 420: 391–396.
(check this in PDF content)
20
Estrada C., Bready J., Berliner J., Cancilla P.A. Choline uptake by cerebral capillaryendothelial cells in culture. J. Neurochem. 1990; 54: 1467–1473.
(check this in PDF content)
21
Haubrich D.R., Wang P.FL., Wedeking P.W. Distribution and metabolism of intravenously administered choline[methyl-3H] and synthesis in vivo of acetylcholine in various tissues of guinea pigs. J. Pharmacol. Exp.Ther. 1975; 193: 246–255.
(check this in PDF content)
22
DeGrado T.R., Baldwin S.W., Wang S. et al. Synthesis and evaluation of(18)F-labeled choline analogs as oncologic PET tracers. J. Nucl. Med. 2001; 42: 1805–1814.
(check this in PDF content)
23
Moore K.R., Harnsberger H.R., Shelton C., Davidson H.C. “Leave me alone” lesions of the petrous apex. Am. J. Neuroradiol. 1998; 19: 733–738.
(check this in PDF content)
24
Katz-Brull R., Degani H. Kinetics of choline transport and phosphorylationin human breast cancer cells NMR application of the zero transmethod. Anticancer Res. 1996; 16: 1375–1380.
(check this in PDF content)
25
Nakagami K., Uchida T., Ohwada S. et al. Increased choline kinaseactivity and elevated phosphocholine levels in human colon cancer. Jpn. J. Cancer Res. 1999; 90: 419–424.
(check this in PDF content)
26
Ramirez de Molina A., Rodriguez-Gonzalez A., Gutierrez R. et al. Overexpression of choline kinase is a frequent feature in human tumorderivedcell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 2002; 296: 580–583.
(check this in PDF content)
27
Slack B.E., Richardson U., Nitsch R.M., Wurtman R.J. Dioctanoylglycerol stimulates accumulation of [methyl'4C]choline and its incorporation into acetylcholine and phosphatidylcholine in a human cholinergic neuroblastoma cell line. Brain Res. 1972; 585: 169–176.
(check this in PDF content)
28
Yavin I. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture: patterns of acetylcholine, phosphocholine and cholinephosphoglycerides labeling from [C] cholin. J. Biol. 1976; 251: 1392–1397.
(check this in PDF content)
29
Galea E., Estrada C. Ouabaine-sensitive choline transport system in capillaries isolated from bovine brain. J. Neurochem. 1992; 59: 936–941.
(check this in PDF content)
30
Vanpouille C., Le Jeune N., Kryza D. et al. Influence of multidrug resistance on (18)F-FCH cellular uptake in a glioblastoma model. Eur. J. Nucl. Med. Mol. Imaging. 2009; 36 (8): 1256–1264.
(check this in PDF content)
31
Hara T., Kosaka N., Kishi H. PET imaging of prostate cancer using carbon-11-choline. J. Nucl. Med. 1998; 39: 990–995.
(check this in PDF content)
32
DeGrado T.R., Coleman R.E., Wang S. et al. Synthesis and evaluation of18F-labeled choline as an oncologic tracer for positron emission tomography: Initial findings in prostate cancer. Cancer Res. 2001; 61: 110–117.
(check this in PDF content)
33
Hara T., Kosaka N., Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: Synthesis, biochemistry, and prostatecancer imaging. J. Nucl. Med. 2002; 43: 187–199.
(check this in PDF content)
34
Ohtani T., Kurihara H., Ishiuchi S. et al. Brain tumour imaging with carbon-11 choline: Comparison with FDG PET and gadolinium-enhanced MR imaging. Eur. J. Nucl. Med. 2001; 28: 1664–1670.
(check this in PDF content)
35
Provenzale J.M., McGraw P., Mhatre P. et al. Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion weighted MR imaging and diffusion-tensor MR imaging. Radiology. 2004; 232: 451–460.
(check this in PDF content)
36
Goebell E., Paustenbach S., Vaeterlein O. et al. Low-grade and anaplastic gliomas: Differences in architecture evaluated with diffusion-tensor MR imaging. Radiology. 2006; 239: 217–222.
(check this in PDF content)
37
Tan H., Chen L., Guan Y., Lin X. Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clin. Nucl. Med. 2011; 36 (11): 978–981.
(check this in PDF content)