The 32 linked references in paper K. SAROYAN V., I. SYTNIK N., V. SOLDATOV O., M. PERSHINA A., N. ZHERNAKOVA I., S. POVETKIN V., L. SERNOV N., К. САРОЯН В., И. СЫТНИК Н., В. СОЛДАТОВ О., М. ПЕРШИНА А., Н. ЖЕРНАКОВА И., С. ПОВЕТКИН В., Л. СЕРНОВ Н. (2018) “ЭНДОТЕЛИАЛЬНАЯ ДИСФУНКЦИЯ ПРИ ВОЗДЕЙСТВ ИИ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ: ПАТОГЕНЕТИЧЕСКИЕ ОСНОВЫ И В ОЗМОЖНОСТИ ФАРМАКОЛОГИЧЕСКОЙ КОРРЕКЦИИ // ENDOTHELIAL DYSFUNCTION UNDER INFLUENCE OF IONIZING RADIATION: PATHOGENETIC BASIS AND OPPORTUNITIES OF PHARMACOLOGICAL CORRECTION” / spz:neicon:ksma:y:2018:i:4:p:124-131

  1. Azizova T., Grigoryeva E., Haylock R., Pikulina M., Moseeva M. Ischaemic heart disease incidence and mortality in an extended cohort of Mayak workers first employed in 1948–1982. The British Journal of Radiology. 2015; 88(1054): 20150169. DOI: 10.1259/ bjr.20150169.
  2. Moseeva M., Azizova T., Grigoryeva E., Haylock R. Risks of circulatory diseases among Mayak PA workers with radiation doses estimated using the improved Mayak Worker Dosimetry System 2008. Radiation and Environmental Biophysics. 2014; 53: 469-477. DOI: 10.1007/s00411-014-0517-x.
  3. Little M., Tawn E., Tzoulaki I. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Journal of Radiation Research. 2008; 169: 99-109. DOI: 10.1667/RR1070.1.
  4. Gimbrone M., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research. 2016; 118: 620-636. DOI: 10.1161/CIRCRESAHA.115.306301.
  5. Kumarathasan P., Vincent R., Blais E., Saravanamuthu A., Gupta P., Wyatt H., Mitchel R., Hannan M., Trivedi A., Whitman S. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation. PLoS One. 2013; 8(6): e65486. DOI: 10.1371/journal.pone.0065486.
  6. Rom O., Reznick A. The stress reaction: a historical perspective. Advances in Experimental Medicine and Biology. 2016; 905: 1-4. DOI: 10.1007/5584_2015_195.
  7. Coppe J., Patil C., Rodier F. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology. 2016; 6: 285368. DOI: 10.1371/journal.pbio.0060301.
  8. Heckmann M., Douwes K., Peter R., Degitz K. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Experimental Cell Research. 1998; 238(1): 148-54. DOI: 10.1006/excr.1997.3826.
  9. 10. 11. Childs B., Durik M., Baker D., van Deursen J. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nature Medicine. 2015; 21:1424-1435. DOI: 10.1038/ nm.4000.
  10. Wang Y., Boerma M., Zhou D. Ionizing radiation-induced endothelial cell senescence and cardiovascular diseases. Journal of Radiation Research. 2016; 186(2): 153-161. DOI: 10.1667/ RR14445.1.
  11. 9325818755238. DOI: 10.1177/1559325818755238. 15. Langley R., Bump E., Quartuccio S., Medeiros D., Braunhut S. Radiation-induced apoptosis in microvascular endothelial cells. The British Journal of Cancer 1997; 75: 666.
  12. Zhong G., Chen F., Bu D., Wang S., Pang Y., Tang C. Cobalt-60 gamma radiation increased the nitric oxide generation in cultured rat vascular smooth muscle cells. Life Science Journal 2004; 74(25): 3055-3063. DOI: 10.1016/j.lfs.2003.08.049.
  13. Donato A., Morgan R., Walker A., Lesniewski L. Cellular and molecular biology of aging endothelial cells. Journal of Molecular and Cellular Cardiology. 2015; 89: 122-35. DOI: 10.1016/j. yjmcc.2015.01.021.
  14. Higashi Y., Kihara Y., Noma K. Endothelial dysfunction and hypertension in aging. Hypertension Research. 2012; 35:1039-47. DOI: 10.1038/hr.2012.138.
  15. Beausejour C., Krtolica A., Galimi F., Narita M., Lowe S., Yaswen P. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO Journal 2003; 22:4212-22. DOI: 10.1093/emboj/cdg417.
  16. Leach J., Black S., Schmidt-Ullrich R., Аikkelsen R. Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. Journal of Biological Chemistry 2002; 277(18): 15400-15406. DOI: 10.1074/jbc.M110309200.
  17. 43. DOI: 10.1161/CIRCRESAHA.116.308537. 22. Di Micco R., Fumagalli M., Cicalese A., Piccinin S., Gasparini P., Luise C., Schurra C., Garre M., Nuciforo P., Bensimon A., Maestro R., Pelicci P., d'Adda di Fagagna F. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638-642. DOI: 10.1038/nature05327. (the paper at Socionet)
  18. Robbins M., Diz D. Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. International Journal of Radiation Oncology Biology Physics. 2006; 64(1): 6-1210. DOI: 10.1016/j.ijrobp.2005.08.033.
  19. Davis T., Landauer M., Mog S., Barshishat-Kupper M., Zins S., Amare M. Timing of captopril administration determines radiation protection or radiation sensitization in a murine model of total body irradiation. Experimental Hematology. 2010; 38(4): 270-81. DOI: 10.1016/j.exphem.2011.02.006.
  20. Medhora M., Gao F., Jacobs E., Moulder J. Radiation damage to the lung: mitigation by angiotensin-converting enzyme (ACE) inhibitors. Respirology. 2012; 17(1): 66-71. DOI: 10.1111/j.14401843.2011.02092.x.
  21. Ward W., Molteni A., Ts’ao C., Hinz J. The effect of captopril on benign and malignant reactions in irradiated rat skin. The British Journal of Radiology. 1990; 63(749): 349-54. DOI: 10.1259/00071285-63-749-349.
  22. Cohen E., Irving A., Drobyski W., Klein J., Passweg J., Talano J. Captopril to mitigate chronic renal failure after hematopoietic stem cell transplantation: a randomized controlled trial. International Journal of Radiation Oncology Biology Physics. 2008; 70(5): 1546-51. DOI: 10.1016/j.ijrobp.2007.08.041.
  23. Charrier S., Michaud A., Badaoui S., Giroux S., Ezan E., Sainteny F. Inhibition of angiotensin I-converting enzyme induces radioprotection by preserving murine hematopoietic short-term reconstituting cells. Blood. 2004; 104(4): 978-85. DOI: 10.1182/ blood-2003-11-3828.
  24. Hu P., Li B., Zhang W., Li Y., Li G., Jiang X. AcSDKP regulates cell proliferation through the PI3KCA/Akt signaling pathway. PLoS ONE. 2013; 8(11): e79321. DOI: 10.1371/journal. pone.0079321.
  25. Day R., Davis T., Barshishat-Kupper M., McCart E., Tipton A., Landauer M. Enhanced hematopoietic protection from radiation by the combination of genistein and captopril. International Journal of Pharmacology. 2013; 15(2): 348-56. DOI: 10.1016/j.intimp.2012.12.029.
  26. Moon C., Krawczyk M., Paik D., Coleman T., Brines M., Juhaszova M. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. Journal of Pharmacology and Experimental Therapeutics. 2006; 316: 999-1005. DOI: 10.1124/jpet.105.094854.
  27. Um M., Gross A., Lodish H. A “Classical” homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cellular Signalling. 2007; 19: 63445. DOI: 10.1016/j.cellsig.2006.08.014.
  28. Assaraf M., Diaz Z., Liberman A., Miller W., Jr., Arvanitakis Z., Li Y. Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. Journal of Neuropathology & Experimental Neurology. 2007; 66: 389-98. DOI: 10.1097/ nen.0b013e3180517b28.
  29. Palazzuoli A., Silverberg D., Iovine F., Capobianco S., Giannotti G., Calabro A. Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. American Heart Journal. 2006; 152:1096-15. DOI: 10.1016/j. ahj.2006.08.005.
  30. Denisiuk T.A. Pharmacotherapeutic strategies for endothelial dysfunction correction with use of statines in syndrome of systemic inflammatory response. Research Result: Pharmacology and Clinical Pharmacology. 2017; 3(4): 35-77. DOI: 10.18413/23138971-2017-3-4-35-77.
  31. Brunner S., Winogradow J., Huber B., Zaruba M.M., Fischer R., David R. Erythropoietin administration after myocardial infarction in mice attenuates ischemic cardiomyopathy associated with enhanced homing of bone marrow-derived progenitor cells via the CXCR-4/SDF-1 axis. FASEB Journal. 2009; 23: 351-61. DOI: 10.1096/fj.08-109462.
  32. Lin J., Chen Y., Chiang H., Ma M. Hypoxic preconditioning protects rat hearts against ischaemia-reperfusion injury: role of erythropoietin on progenitor cell mobilization. The Journal of Physiology. 2008; 586: 5757-69. DOI: 10.1113/jphysiol.2008.160887.