The 12 linked references in paper T. Tsekhmistrenko A., S. Klochkova V., A. Mazloev B., D. Nikityuk B., D. Obukhov K., Т. Цехмистренко А., С. Клочкова В., А. Мазлоев Б., Д. Никитюк Б., Д. Обухов К. (2019) “Изменения толщины коры и слоев в задней доле мозжечка человека в постнатальном онтогенезе // Changes in thickness of cortex and its layers in the posterior lobe of the cerebellum in postnatal ontogenesis” / spz:neicon:anatomy:y:2018:i:4:p:88-93

  1. Amlien I. K., Fjell A. M., Tamnes C. K., Grydeland H., Krogsrud S. K, Chaplin T. A., Rosa M. G. P., Walhovd K. B. Organizing Principles of Human Cortical Development—Thickness and Area from 4 to 30 Years: Insights from Com- parative Primate Neuroanatomy. Cereb Cortex. 2016; 26: 257–267. doi: 10.1093/cercor/bhu214.
  2. Belkhiria C., Mssedi E., Habas C., Driss T., de Marco G. Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. Cerebellum. 2018. doi: 10.1007/s12311018-0980-z.
  3. Boisgontier M. P., Cheval B., van Ruitenbeek P., Cuypers K., Leunissen I., Sunaert S., Meesen R., Adab H. Z., Renaud O., Swinnen S. P. Cerebellar grey matter explains bimanual coordination performance in children and older adults. Neurobiology of Aging. 2018: 1–53. doi: 10.1016/j.neurobiolaging.2018.01.016.
  4. Buckner R. L., Krienen F. M., Castellanos A., Diaz J. C., Yeo B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011; 106: 2322–2345. DOI: https://doi.org/10.1152/jn.00339.2011.
  5. Fischl B. FreeSurfer. Neuroimage. 2012; 62(2): 774–781. doi: 10.1016/j.neuroimage.2012.01.021.
  6. Guell X., Schmahmann J. D., Gabrieli J. D. E., Ghosh S. S. Functional gradients of the cerebellum. eLife 2018;7: e36652. 22. DOI: https://doi.org/10.7554/eLife.36652.
  7. Li G., Lin W., Gilmore J. H., Shen D. Spatial Patterns, Longitudinal Development, and Hemispheric Asymmetries of Cortical Thickness in Infants from Birth to 2 Years of Age. J Neurosci. 2015; 35(24): 9150–9162. doi: 10.1523/jneurosci.4107-14.2015.
  8. Park J. H., Kim C. S., Won K. S., Oh J. S., Kim J. S., Kim H. W. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities. PLoS One. 2017. 12(11): e0186976. doi: 10.1371/journal.pone.0186976.
  9. Stoodley C. J., Schmahmann J. D. Functional topography of the human cerebellum. In: M. Manto, T.A.G.M. Huisman (Eds.), Handbook of Clinical Neurology. Vol. 154 (3rd series). The Cerebellum: From Embryology to Diagnostic Investigations. Elsevier; 2018: 59-70. doi:10.1016/b978-0-44463956-1.00004-7.
  10. Sussman D., Leung R. C., Mallar C. M. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain and Behav. 2016; 6(4): e00457. doi: 10.1002/brb3.457.
  11. doi: 10.1159/000489943. 16. Wang D., Buckner R. L., Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013; 109(1): 46–57. doi: 10.1152/jn.00598.2012.
  12. Wang H., Chen H., Wu J., Tao L., Pang Y., Gu M., Ly F., Luo T., Cheng O., Sheng K., Luo J., Hu Y., Fang W. Altered resting-state voxel-level wholebrain functional connectivity in depressed Parkinson's disease, Parkinsonism and Related Disorders. 2018: 1–7. https://doi.org/10.1016/j.parkreldis.2018.02.019.